Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 8:
\(1,P=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\\ 2,P=2\Leftrightarrow2\sqrt{x}+4=3\sqrt{x}\Leftrightarrow\sqrt{x}=4\\ \Leftrightarrow x=16\left(tm\right)\)
Bài 9:
\(a,M=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ M=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\left(\sqrt{x}-1\right)\\ M=\dfrac{x-1}{\sqrt{x}}\\ b,M>0\Leftrightarrow x-1>0\left(\sqrt{x}>0\right)\\ \Leftrightarrow x>1\)
Bài 10:
\(a,A=\dfrac{\sqrt{\left(x+3\right)^2}}{x+3}=\dfrac{\left|x+3\right|}{x+3}\)
Với \(x\ge-3\Leftrightarrow A=\dfrac{x+3}{x+3}=1\)
Với \(x< -3\Leftrightarrow A=\dfrac{-\left(x+3\right)}{x+3}=-1\)
\(b,B=\dfrac{2}{x-1}\cdot\dfrac{\left|x-1\right|}{2\left|x\right|}\)
Với \(0< x< 1\Leftrightarrow B=\dfrac{2}{x-1}\cdot\dfrac{-\left(x-1\right)}{2x}=-\dfrac{1}{x}\)
Bài 2:
a: \(\Leftrightarrow2x-1=49\)
hay x=25
b: \(\Leftrightarrow4\sqrt{x-3}-16\sqrt{x-2}+2\sqrt{x-2}=-20\)
\(\Leftrightarrow x-2=4\)
hay x=6
Bài 1:
\(a,ĐK:x+5\ge0\Leftrightarrow x\ge-5\\ b,ĐK:\dfrac{2021}{4-2x}\ge0\Leftrightarrow4-2x>0\Leftrightarrow x< 2\)
Bài 2:
\(a,=5\sqrt{3}-4\sqrt{3}-10\sqrt{3}-3\sqrt{3}=-12\sqrt{3}\\ b,=2\sqrt{5}+\dfrac{8\left(3-\sqrt{5}\right)}{4}=2\sqrt{5}+6-2\sqrt{5}=6\)
Bài 3:
\(A=\dfrac{\sqrt{x}-2+2\sqrt{x}+4+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3}{\sqrt{x}-2}\)
Bài 4:
\(a,\Leftrightarrow\left|3x-2\right|=7\Leftrightarrow\left[{}\begin{matrix}3x=9\\3x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{3}\end{matrix}\right.\\ b,ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow5\sqrt{2x-1}-\sqrt{2x-1}=12\\ \Leftrightarrow\sqrt{2x-1}=3\Leftrightarrow2x-1=9\\ \Leftrightarrow x=5\left(tm\right)\)
Bài 5:
\(b,\Leftrightarrow\left\{{}\begin{matrix}m-1=2\\2m+\sqrt{5}\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne\dfrac{-3-\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow m=3\)
1,
a, x khác phân số có mẫu là 0
b,x khác 2
4,
a, theo đề:
=>(3x-2)^2=49
=>3x-2=7
x=3
bt cs nhiu đây à :<
Bài 4:
ĐKXĐ: \(x\ge3\)
Ta có: \(\sqrt{x^2-9}-\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
Bài 1.1
a. Để căn thức có nghĩa (CTCN) thì $2x-1\geq 0$
$\Leftrightarrow x\geq \frac{1}{2}$
b. Để CTCN thì $-2x+0,5\geq 0$
$\Leftrightarrow 0,5\geq 2x\Leftrightarrow x\leq \frac{1}{4}$
c. Để CTCN thì \(\left\{\begin{matrix} x-1\neq 0\\ \frac{1}{x-1}\geq 0\end{matrix}\right.\Leftrightarrow x-1>0\Leftrightarrow x>1\)
d. Để CTCN thì \(\left\{\begin{matrix} x^2+2021\neq 0\\ \frac{2022-x}{x^2+2021}\geq 0\end{matrix}\right.\Leftrightarrow 2022-x\geq 0\) (do $x^2+2021>0$ với mọi $x\in\mathbb{R}$)
$\Leftrightarrow x\leq 2022$
Bài 1.2
a. $3=\sqrt{9}>\sqrt{8}$
b. $-7=-\sqrt{49}> -\sqrt{51}$
c. $3+\sqrt{2}> 3+\sqrt{1}=4=2+2=2+\sqrt{4}> 2+\sqrt{3}$
d. $\sqrt{26}+3>\sqrt{25}+3=8=\sqrt{64}>\sqrt{63}$
e.
$\frac{1}{2}=\frac{2-1}{2}=\frac{\sqrt{4}-1}{2}> \frac{\sqrt{2}-1}{2}$
f.
Xét hiệu $5-2\sqrt{7}-(3-\sqrt{10})=2-(\sqrt{28}-\sqrt{10})$
$=2-\frac{18}{\sqrt{28}+\sqrt{10}}< 2-\frac{18}{\sqrt{2(28+10)}}$ (áp dụng BĐT $\sqrt{a}+\sqrt{b}\leq \sqrt{2(a+b)}$)
$=2-\frac{18}{\sqrt{76}}< 2-\frac{18}{\sqrt{81}}=0$
$\Rightarrow 5-2\sqrt{7}< 3-\sqrt{10}$
Bài 1:
\(a,m=6\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\\ m=-6\Leftrightarrow x^2-5x-6=0\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\end{matrix}\right.\\ m=8\Leftrightarrow x^2-5x+8=0\Leftrightarrow x\in\varnothing\\ m=-8\Leftrightarrow x^2-5x-8=0\Leftrightarrow x=\dfrac{5\pm\sqrt{57}}{2}\\ m=-3\Leftrightarrow x^2-5x-3=0\Leftrightarrow x=\dfrac{5\pm\sqrt{37}}{2}\\ m=0\Leftrightarrow x^2-5x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\\ m=4\Leftrightarrow x^2-5x+4=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\\ m=2\Leftrightarrow x^2-5x+2=0\Leftrightarrow x=\dfrac{5\pm\sqrt{17}}{2}\\ m=10\Leftrightarrow x^2-5x+10=0\Leftrightarrow x\in\varnothing\)
Câu 1:
\(b,\Leftrightarrow\Delta=25-4m\ge0\Leftrightarrow m\le\dfrac{25}{4}\\ c,\Leftrightarrow\Delta=0\Leftrightarrow m=\dfrac{25}{4}\Leftrightarrow x=-\dfrac{b}{2a}=\dfrac{5}{2}\\ d,x=5\Leftrightarrow25-25+m=0\Leftrightarrow m=0\\ \Leftrightarrow x^2-5x=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=0\end{matrix}\right.\\ e,x=-2\Leftrightarrow4+10+m=0\Leftrightarrow m=-14\\ \Leftrightarrow x^2-5x+14=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\\ f,\Leftrightarrow\Delta< 0\Leftrightarrow m>\dfrac{25}{4}\)