K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

a: \(AH=\dfrac{3\sqrt{6}}{5}\left(cm\right)\)

\(AB=\sqrt{AH^2+HB^2}=\dfrac{3\sqrt{10}}{5}\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}=\sqrt{3^2-\left(\dfrac{3\sqrt{10}}{5}\right)^2}=\dfrac{3\sqrt{15}}{5}\left(cm\right)\)

Vì mỗi phần tử ở 1 tập hợp đều chỉ xuất hiện 1 lần mà ở tập hợp A lại xuất hiện 4 lần lên 4

=> Tập hợp A = { 1 }

Tập hợp A là tập hợp của con của tập hợp B

Vì phần tử ở tập hợp A đều thuộc tập hợp B

=> A là tập hợp con của B

8 tháng 7 2016

... Cho em thắc mắc ạ, em không tìm đọc ở đâu có ghi rằng mỗi phần tử ở 1 tập hợp đều chỉ được phép xuất hiện 1 lần.
Nếu theo ý thầy thì đó là dạng tập hợp tổng quát.
Vậy ta phải kết luận là tập hợp tổng quát của A là A1 = { 1 } là tập con của B mới đúng chứ ạ.
Còn A có đến tận 4 số 1, trong khi B chỉ có 1 số 1, nếu thế bản chất là số lượng phần tử số 1 của A lớn hơn số lượng phần tử số 1 của B vậy A không thể là tập con của B ạ.
Khi vẽ ra sơ đồ ta sẽ thấy ngay ạ...
Mong thầy giải đáp giúp ạ
2 3 4 1 1 1 1

7 tháng 10 2021

\(a,P\left(1\right)=-18\Leftrightarrow1+a+b+c+d-141=-18\\ \Leftrightarrow a+b+c+d=122\left(1\right)\\ P\left(2\right)=-11\\ \Leftrightarrow32+16a+8b+4c+2d-141=-11\\ \Leftrightarrow16a+8b+4c+2d=98\\ \Leftrightarrow8a+4b+2c+d=49\\ P\left(3\right)=243+81a+27b+9c+3d-141=0\\ \Leftrightarrow81a+27b+9c+3d=-102\\ \Leftrightarrow27a+9b+3c+d=-34\left(3\right)\\ P\left(x\right):\left(x-5\right)R34\\ \Leftrightarrow x^5+ax^4+bx^3+cx^2+dx-141=\left(x-5\right)\cdot a\left(x\right)+34\\ \Leftrightarrow P\left(5\right)=3125+625a+125b+25c+5d-141=34\\ \Leftrightarrow625a+125b+25c+5d=-2950\\ \Leftrightarrow125a+25b+5c+d=-590\left(4\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\left(4\right)\Leftrightarrow\left\{{}\begin{matrix}a+b+c+d=122\\8a+4b+2c+d=49\\27a+9b+3c+d=-34\\125a+25b+5c+d=-590\end{matrix}\right.\)

\(\Leftrightarrow a=-15;b=85;c=-223;d=275\)

 

7 tháng 10 2021

cho em là cái chỗ p(5) là như thế nào vậy ạ

24 tháng 3 2022

lm câu mấy ạ

24 tháng 3 2022

Nếu được thì mong cả 3 câu luôn bạn nhé. 

NV
22 tháng 7 2021

1.

Xét pt đầu:

\(x^2-xy+x-y=0\)

\(\Leftrightarrow x\left(x-y\right)+x-y=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-y\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=y\end{matrix}\right.\)

TH1: \(x=-1\) thay xuống pt dươi:

\(\sqrt{y^2+15}=-3-2+\sqrt{9}\Leftrightarrow\sqrt{y^2+15}=-2< 0\) (vô nghiệm)

TH2: thay \(y=x\) xuống pt dưới:

\(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\) (1)

\(\Rightarrow3x-2=\sqrt{x^2+15}-\sqrt{x^2+8}=\dfrac{7}{\sqrt{x^2+15}+\sqrt{x^2+8}}>0\)

\(\Rightarrow x>\dfrac{2}{3}\)

Do đó (1) tương đương:

\(3x-2+\sqrt{x^2+8}-\sqrt{x^2+15}=0\)

\(\Leftrightarrow3x-3+\sqrt{x^2+8}-3+4-\sqrt{x^2+15}=0\)

\(\Leftrightarrow3\left(x-1\right)+\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+8}+3}-\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+15}+4}=0\)

\(\Leftrightarrow\left(x-1\right)\left[3+\left(x+1\right)\left(\dfrac{1}{\sqrt{x^2+8}+3}-\dfrac{1}{\sqrt{x^2+15}+4}\right)\right]=0\)

\(\Leftrightarrow x-1=0\) (do \(x+1>0\) nên ngoặc phía sau luôn dương)

\(\Leftrightarrow x=y=1\)

NV
22 tháng 7 2021

2.

Pt đầu tương đương:

\(y^2-x+x^2-2xy+x=0\)

\(\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow y=x\)

Thay xuống pt dưới:

\(2x^2+x-x^2+x-3=0\)

\(\Leftrightarrow x^2+2x-3=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-3\Rightarrow y=-3\end{matrix}\right.\)