K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 3 2022

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(P=\sqrt{\dfrac{yz}{x^2+1}}+\sqrt{\dfrac{zx}{y^2+1}}+\sqrt{\dfrac{xy}{z^2+1}}\)

\(P=\sqrt{\dfrac{yz}{x^2+xy+yz+zx}}+\sqrt{\dfrac{zx}{y^2+xy+yz+zx}}+\sqrt{\dfrac{xy}{z^2+xy+yz+zx}}\)

\(P=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\dfrac{zx}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\)

\(P\le\dfrac{1}{2}\left(\dfrac{y}{x+y}+\dfrac{z}{x+z}\right)+\dfrac{1}{2}\left(\dfrac{z}{y+z}+\dfrac{x}{x+y}\right)+\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)=\dfrac{3}{2}\)

\(P_{max}=\dfrac{3}{2}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\) hay \(a=b=c=\sqrt{3}\)

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
14 tháng 3 2022

ko biết mk làm có đúng ko nhma có gì sai thì đừng trách mk nhé

\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\ge\dfrac{63}{a^2+b^2+c^2}\)

\(6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{a}{ac}\right)+2021\ge\dfrac{54}{ab+bc+ac}+2021\ge\dfrac{54}{a^2+b^2+c^2}+2021\)

<=>\(\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{2021}{9}\)

\(p^2=\left(\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\right)^2\)

áp dụng bđt \(a^2+b^2+c^2\ge\dfrac{1}{3}\left(a+b+c\right)^2\)

\(p^2\le3.\left(\dfrac{1}{3\left(2a^2+b^2\right)}+\dfrac{1}{3\left(2b^2+c^2\right)}+\dfrac{1}{3\left(2c^2+a^2\right)}\right)=\dfrac{1}{2a^2+b^2}+\dfrac{1}{2b^2+c^2}+\dfrac{1}{2c^2+a^2}\)

\(< =>p^2\le\dfrac{9}{2a^2+b^2+2b^2+c^2+2c^2+a^2}\)

<=> \(p^2\le3.\dfrac{1}{a^2+b^2+c^2}=\dfrac{2021}{3}< =>p\le\sqrt{\dfrac{2021}{3}}\)

dấu bằng xảy ra khi \(a=b=c=\sqrt{\dfrac{3}{2021}}\)

NV
15 tháng 3 2022

\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)+2021\le6\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)+2021\)

\(\Rightarrow2021\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le\sqrt{2021.3}=\sqrt{6063}\)

Từ đó:

\(\sqrt{3\left(2a^2+b\right)}=\sqrt{\left(2+1\right)\left(2a^2+b^2\right)}\ge\sqrt{\left(2a+b\right)^2}=2a+b\)

\(\Rightarrow\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}\le\dfrac{1}{2a+b}=\dfrac{1}{a+a+b}\le\dfrac{1}{9}\left(\dfrac{2}{a}+\dfrac{1}{b}\right)\)

Tương tự: \(\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}\le\dfrac{1}{9}\left(\dfrac{2}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\dfrac{1}{9}\left(\dfrac{2}{c}+\dfrac{1}{a}\right)\)

Cộng vế:

\(\Rightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}\right)=\dfrac{1}{3}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\le\dfrac{\sqrt{6063}}{3}\)

\(P_{max}=\dfrac{\sqrt{6063}}{3}\) khi \(a=b=c=\dfrac{3}{\sqrt{6063}}\)

22 tháng 12 2021

Ta có \(\sqrt{bc\left(1+a^2\right)}=\sqrt{bc+a^2bc}=\sqrt{bc+a\left(a+b+c\right)}\)

\(=\sqrt{\left(a+b\right)\left(a+c\right)}\)

Đặt BT đề cho là P

\(\Leftrightarrow P=\sum\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}=\sum\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{b+c}+\dfrac{b}{b+a}+\dfrac{c}{c+a}+\dfrac{c}{c+b}\right)\\ \Leftrightarrow P\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{1}{2}\cdot3=\dfrac{3}{2}\)

Dấu \("="\Leftrightarrow a=b=c=\sqrt{3}\)

11 tháng 10 2018

Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.

11 tháng 10 2018

mk viết nhầm

\(ab+bc+ca=1\)

bn giúp mk với

NV
21 tháng 8 2021

\(Q=\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}\ge\sum\dfrac{\left(a+b\right)^2}{\sqrt{2\left(b+c\right)^2+\dfrac{1}{4}\left(b+c\right)^2}}=\dfrac{2}{3}\sum\dfrac{\left(a+b\right)^2}{b+c}\)

\(Q\ge\dfrac{2}{3}.\dfrac{\left(a+b+b+c+c+a\right)^2}{a+b+b+c+c+a}=\dfrac{4}{3}\left(a+b+c\right)=\dfrac{4}{3}\)

21 tháng 8 2021

∑ cái này nghĩa là gì ạ

NV
21 tháng 3 2022

Đẳng thức quen thuộc: \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\) và tương tự cho các mẫu số còn lại

Ta có:

\(\sum\dfrac{1}{a^2+1}=\sum\dfrac{1}{\left(a+b\right)\left(a+c\right)}=\dfrac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2\left(ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Mặt khác:

\(2\left(ab+bc+ca\right)\left(a+b+c\right)=\left[a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right]\left(a+b+c\right)\)

\(\ge\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\) (Bunhiacopxki)

\(\Rightarrow\sum\dfrac{1}{a^2+1}\ge\dfrac{\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\left(\dfrac{a}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\right)^2\)

\(=\left(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\right)^2\)

Do đó ta chỉ cần chứng minh:

\(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{3}{2}\)

Đúng theo AM-GM:

\(\sum\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\sum\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

31 tháng 8 2017

Xét \(\sqrt{\dfrac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\dfrac{\left(a\left(a+b+c\right)+bc\right)\left(b\left(a+b+c\right)+ac\right)}{c\left(a+b+c\right)+ab}}\)

\(=\sqrt{\dfrac{\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)}{ac+bc+c^2+ab}}\)

\(=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}}\)\(=\sqrt{\left(a+b\right)^2}=a+b\)

Tương tự cho 2 đẳng thức còn lại rồi cộng theo vế

\(P=a+b+b+c+c+a=2\left(a+b+c\right)=2\)