K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

\(d,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}=2+\sqrt{x+1}\\ \Leftrightarrow x-1=2+x+1+4\sqrt{x+1}\\ \Leftrightarrow4\sqrt{x+1}=-4\Leftrightarrow x\in\varnothing\left(4\sqrt{x+1}\ge0\right)\\ g,ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{\left(x+\sqrt{2x-1}\right)\left(x-\sqrt{2x-1}\right)}=2\\ \Leftrightarrow2x+2\sqrt{x^2-2x+1}=2\\ \Leftrightarrow\sqrt{\left(x-1\right)^2}=\dfrac{2-2x}{2}=1-x\\ \Leftrightarrow\left|x-1\right|=1-x\\ \Leftrightarrow\left[{}\begin{matrix}x-1=1-x\left(x\ge1\right)\\x-1=x-1\left(x< 1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x\in R\end{matrix}\right.\)

 

2 tháng 6 2021

a)

\(\left(x+1\right)\left(x-3\right)\left(x^2-2x\right)=-2\)

<=> (x + 1).(x - 3).x.(x - 2) = -2

<=> [ (x + 1). (x - 3) ]. [ x. (x - 2) ] = -2

\(\Leftrightarrow\left(x^2-2x-3\right).\left(x^2-2x\right)+2=0\) (1)

Đặt \(x^2-2x=a\)

PT (1) <=> (a - 3).a + 2 = 0

\(\Leftrightarrow a^2-3a+2=0\)

\(\Leftrightarrow a^2-a-2a+2=0\)

<=> a. (a - 1) - 2. (a - 1) = 0

<=> (a - 1). (a - 2) = 0

<=> a - 1 = 0 hoặc a - 2 = 0

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-1=0\\x^2-2x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2-2=0\\\left(x-1\right)^2-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1-\sqrt{2}\right).\left(x-1+\sqrt{2}\right)=0\\\left(x-1-\sqrt{3}\right).\left(x-1+\sqrt{3}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{2}\\x=1-\sqrt{2}\\x=1+\sqrt{3}\\x=1-\sqrt{3}\end{matrix}\right.\)

2 tháng 6 2021

b) \(\left\{{}\begin{matrix}x^2+x-y^2-y=0\left(1\right)\\x^2+y^2-2\left(x+y\right)=0\left(2\right)\end{matrix}\right.\)

PT (1)\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x+y=-1\end{matrix}\right.\)

TH1: x=y thay vào Pt (2) ta được: \(2x^2-4x=0\Leftrightarrow\left[{}\begin{matrix}x=0\Rightarrow y=0\\x=2\Rightarrow y=2\end{matrix}\right.\)

TH2: Thay x+y=-1 vào Pt (2) ta được: \(x^2+y^2+2=0\left(vn\right)\)

Vậy hẹ pt có nghiệm (x;y)=(0;0) ; (2;2)

NV
13 tháng 1 2022

Gọi số CLB tối đa là x (nguyên dương).

Theo nguyên lý Dirichlet, từ 10 học sinh nào đó luôn có ít nhất \(\left[\dfrac{10+x-1}{x}\right]\) học sinh tham gia cùng 1 CLB

\(\Rightarrow\left[\dfrac{9+x}{x}\right]=3\Rightarrow\left[\dfrac{9}{x}+1\right]=3\)

\(\Rightarrow\left[\dfrac{9}{x}\right]+1=3\Rightarrow\left[\dfrac{9}{x}\right]=2\)

\(\Rightarrow2\le\dfrac{9}{x}< 3\Rightarrow3< x\le\dfrac{9}{2}\)

\(\Rightarrow x=4\)

Khi đó theo nguyên lý Dirichlet luôn tồn tại 1 CLB có ít nhất \(\left[\dfrac{35+4-1}{4}\right]=9\) học sinh

Bài 5: 

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có: \(G=\dfrac{x-\sqrt{x}}{\sqrt{x}-1}-\dfrac{x-1}{\sqrt{x}+1}\)

\(=\sqrt{x}-\sqrt{x}+1\)

=1

3 tháng 10 2021

Giải chi tiết giúp mình đc ko

ĐK \(x\ge-4\)

\(BPT\Leftrightarrow\hept{\begin{cases}2x-3\ge0\\x\ge-4\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\ge-4\end{cases}}\)

\(\Rightarrow x\ge\frac{3}{2}\)

23 tháng 10 2019

ĐK: \(x+4\ge0\) <=> \(x\ge-4\)

Bpt <=> \(\orbr{\begin{cases}x+4=0\\2x-3=0\end{cases}}\) hoặc \(2x-3>0\) <=> \(\orbr{\begin{cases}x=-4\\x=\frac{3}{2}\end{cases}}\)hoặc \(x>\frac{3}{2}\)

<=> \(\orbr{\begin{cases}x=-4\\x\ge\frac{3}{2}\end{cases}}\)Thỏa mãn đk.

Vậy 

\(\orbr{\begin{cases}x=-4\\x\ge\frac{3}{2}\end{cases}}\)

23 tháng 10 2016

\(1\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)

\(=1\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(1+3\sqrt{2}-\sqrt{6}-\sqrt{3}\right)\)

\(=1\left(\sqrt{6}+1\right)\left(2\sqrt{6}-2\right)\)

\(=2\left(\sqrt{6}-1\right)\left(\sqrt{6}+1\right)=10\)

Cứ nhân lần lược vào rồi rút gọn sẽ được như trên

22 tháng 10 2016

Đọc cái đề giống như muốn hack não quá. Ghi rõ đi bạn

29 tháng 10 2021

bạn có lộn câu không bạn

 

17 tháng 11 2017

A B C H 50 37 O O

Kẻ \(AH\perp BC\). Đặt BH = x thì \(CH=60-x\)

Xét tam giác vuông ABH có: \(AH=tan50^o.x\)

Xét tam giác vuông ACH có: \(AH=tan37^o.\left(60-x\right)\)

Vậy nên ta có: \(tan50.x=tan37^o.\left(60-x\right)\)

\(\Leftrightarrow\left(tan50^o+tan37^o\right).x=tan37^o.60\)

\(\Leftrightarrow x=\frac{tan37^o.60}{tan50^o+tan37^o}\)  (cm)

Vậy thì \(AB=\frac{x}{cos50^o}=\frac{tan37^o.60}{cos50^o\left(tan50^o+tan37^o\right)}\)  (cm)

\(AH=x.tan50^o=\frac{tan50^o.tan37^o.60}{\left(tan50^o+tan37^o\right)}\)  (cm)

\(AC=\frac{AH}{sin37^o}=\frac{tan50^o.60}{cos37^o\left(tan50^o+tan37^o\right)}\)  (cm)

\(S_{ABC}=\frac{1}{2}.BC.AH=\frac{30tan50^o.tan37^o.60}{tan50^o+tan37^o}=\frac{1800tan50^o.tan37^o}{tan50^o+tan37^o}\left(cm^2\right)\)

2 tháng 2 2020

A B C H P Q

Xét tứ giác APHQ có :

Góc A + Góc APH + Góc PHQ + Góc AQH = 360o

\(\Rightarrow\)Góc A + 90o + Góc PHQ + 90o = 360o

\(\Rightarrow\)Góc A + Góc PHQ = 180o

\(\Rightarrow\)Góc A + Góc BHC = 180o  (Do góc PHQ = góc BHC (Đối đỉnh))

\(\Rightarrow\)ĐPCM