Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Bình thường mà)
Tính \(\Delta_x=\left(2012+y\right)^2-4\left(2013+y\right)=\left(y+2010\right)^2-8\)
Để pt có nghiệm nguyên thì trước hết \(\Delta_x\) chính phương.
Mà bản thân số \(\left(y+2010\right)^2\) đã chính phương nên ta chỉ cần tìm 2 số chính phương lệch nhau 8 đơn vị.
Đó là số \(1\) và \(9\).
\(\left(y+2010\right)^2=9\) vì đây là số chính phương lớn hơn. Đến đây bạn tìm được \(y\) và sẽ suy ra \(x\).
Mình chỉ có thắc mắc là tại sao \(\Delta_x\) phải là chính phương thì nghiệm nguyên thôi?
a: \(P=\dfrac{x-\sqrt{x}-1-\sqrt{x}+1}{x-1}\cdot\dfrac{4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\cdot4\left(\sqrt{x}-2\right)}{\sqrt{x}\left(x-1\right)}=\dfrac{4}{x-1}\)
Để P nguyên dương thì x-1 thuộc {1;4;2}
=>x thuộc {2;5;3}
b: x+y+z=0
=>x=-y-z; y=-x-z; z=-x-y
\(P=\dfrac{x^2}{y^2+z^2-\left(y+z\right)^2}+\dfrac{y^2}{z^2+x^2-\left(x+z\right)^2}+\dfrac{z^2}{x^2+y^2-\left(x+y\right)^2}\)
\(=\dfrac{x^2}{-2yz}+\dfrac{y^2}{-2xz}+\dfrac{z^2}{-2xy}\)
\(=\dfrac{x^3+y^3+z^3}{2xyz}\cdot\left(-1\right)\)
\(=-\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)}{2xyz}\)
\(=-\dfrac{\left(-z\right)^3+z^3-3xy\cdot\left(-z\right)}{2xyz}=-\dfrac{3}{2}\)
C nguyên <=> \(4x+3⋮x^2+1\)
<=> \(4x^2+3x⋮x^2+1\left(1\right)\)
Ta có \(4x^2+4⋮x^2+1\left(2\right)\)
Lấy (1)-(2) <=>\(3x-4⋮x^2+1\) <=> \(12x-16⋮x^2+1\left(3\right)\)
Có \(4x+3⋮x^2+1\)
<=>\(12x+9⋮x^2+1\left(4\right)\)
Từ (3); (4) ta có <=>\(25⋮x^2+1\)
Do x2+1 luôn \(\ge1\)nên \(x^2+1\in\left\{1,5,25\right\}\)
Do x nguyên nên ta giải ra \(x\in\left\{0,\pm2\right\}\)
BÙI VĂN LỰC Tại sao lại sai hả bạn ^_^