mong mn trả lời ạ.Nhanh ạ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

\(a^m\cdot a^n=a^{m+n}\\ \left(\dfrac{2}{3}\right)^5\cdot\left(\dfrac{2}{3}\right)^3=\left(\dfrac{2}{3}\right)^8\)

16 tháng 10 2021

\(\left(\dfrac{2}{3}\right)^5.\left(\dfrac{2}{3}\right)^3=\left(\dfrac{2}{3}\right)^{5+3}=\left(\dfrac{2}{3}\right)^8=\dfrac{256}{6561}\)

31 tháng 10 2017
x 10 -2 -3 1 0 1.21 0.25
\(^{x^2}\) 100 4 9 1 0 1.4641

0.0625

1.44 -25 \(\dfrac{4}{9}\)
2.0736 625 \(\dfrac{16}{81}\)

okhehe

19 tháng 10 2017

chẳng nhìn thấy j cả!oho Thông cảm mk bị cận!gianroi

12 tháng 3 2018

Hình chiếu của AN < hình chiếu của AC

=> đường xiên BN < đường xiên của BC (1)

Hình chiếu của AM < hình chiếu AB => đường xiên MN < đường xiên NB. (2)

Từ (1) và (2) suy ra:

MN< BN< BC.

12 tháng 3 2018

Ta có AN+NC=AC

\(\Rightarrow\)AN < AC mà AN là hình chiếu của đường xiên MN,AC là hình chiếu của đường xiên BC

\(\Rightarrow\)MN<BC (đpcm)

mik lm hơi vắn tắt 1 xíuleuleu

Đại lượng tỉ lệ thuận: Đại lượng a và đại lượng b tỉ lệ thuận khi a tăng bấy nhiêu thì b tăng bấy nhiêu và ngược lại

Đại lượng tỉ lệ nghịch: Đại lượng a và đại lượng b tỉ lệ nghịch khi a giảm bấy nhiêu thì b tăng bấy nhiêu và ngược lại

20 tháng 10 2017

BT1.

Ta có: \(2009^{20}=2009^{10}\times2009^2\)\(20092009^{10}=2009^{10}\times10001^{10}\)

Rõ ràng \(2009^2< 10001^{10}\\ \Rightarrow2009^{10}\times2009^2< 2009^{10}\times10001^{10}\\ \Rightarrow2009^{20}< 20092009^{10}\left(đpcm\right)\)

BT9. Bn xem lại đề bài đi. \(x^2+x+1\) luôn lớn hơn 0 mà bn.

BT3.

Giả sử \(M\in N\)

Nên:

\(\left\{{}\begin{matrix}\dfrac{x}{x+y+z}\in N\\\dfrac{y}{y+x+t}\in N\\\dfrac{z}{z+t+y}\in N\\\dfrac{t}{t+z+x}\in N\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x⋮x+y+z\\y⋮y+x+t\\z⋮z+t+y\\t⋮t+z+x\end{matrix}\right.\)

\(x,y,z,t\in N\)*\(\Rightarrow x,y,z,t>0\)\(\Rightarrow\left\{{}\begin{matrix}x>x+y+z\\y>x+y+t\\z>y+z+t\\t>x+z+t\end{matrix}\right.\)(vô lí)

Vậy rõ ràng điều giả sử là vô lí. Nên \(M\notin N\left(đpcm\right)\)

Mình chỉ giúp đc đến đây thôi, mong bn thông cảm

Ngoài ra, chúc bn học tốt nhébanhbanhbanhbanhbanh

20 tháng 10 2017

Bài toán 2.

Ta có: \(B=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+....+\dfrac{2}{2007}+\dfrac{1}{2008}\)

\(=\dfrac{2009-1}{1}+\dfrac{2009-2}{2}+\dfrac{2009-3}{3}+...+\dfrac{2009-2008}{2008}\)

\(=2009-1+\dfrac{2009}{2}-1+\dfrac{2009}{3}-1+....+\dfrac{2009}{2008}-1\)

\(=2009+2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{....1}{2008}\right)-1.2008\)

\(=\left(2009-2008\right)+2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2008}\right)\)

\(=1+2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{2008}\right)\)

\(=2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2008}+\dfrac{1}{2009}\right)\)

=\(2009.A\)

Do đó, tỉ số \(\dfrac{A}{B}=\dfrac{A}{2009.A}=\dfrac{1}{2009}\)

15 tháng 11 2017

-Vâng chào bạn .Chào mừng bạn đến cộng đồng học tập online!!!

15 tháng 11 2017

ok luôn

9 tháng 9 2017

Giải:

a) \(-1313x^2y.2xy^3\)

\(=\left(-1313.2\right)\left(x^2.x\right)\left(y.y^3\right)\)

\(=-2626x^3y^4\)

Bậc của đơn thức là: \(3+4=7\)

b) \(1414x^3y.\left(-2x^3y^5\right)\)

\(=\left[1414.\left(-2\right)\right]\left(x^3.x^3\right)\left(y.y^5\right)\)

\(=-2828x^6y^6\)

Bậc của đơn thức là: \(6+6=12\).

Chúc bạn học tốt!!!

9 tháng 9 2017

a) -x2y. 2xy3 = -2x3y4. Đơn thức có bậc là 7

b) x3y. (-2x3y5) = -2x6y6. Đơn thức có bậc là 12

7 tháng 10 2017

\(\left(x-3\right).\left(x-2015\right)< 0\)

\(\Rightarrow\left(x-3\right)và\left(x-2015\right)\) phải khác dấu

\(\Rightarrow\left(x-3\right)< \left(x-2015\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x-3>0\\x-2015< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>3\\x< 2015\end{matrix}\right.\)

\(\Rightarrow3< x< 2015\)

\(\Rightarrow x\in\left\{4;5;6;7;8;...;2013;2014\right\}\)

( ko bt đúng hay sai nx )

7 tháng 10 2017

thám tử

\(\left(x-3\right)\left(x-2015\right)< 0\)

Với mọi \(x\in R\) thì:

\(x-2015< x-3\)

Khi đó: \(\left\{{}\begin{matrix}x-2015< 0\\x-3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2015\\x>3\end{matrix}\right.\)

Nên \(3< x< 2015\)