Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔBAI=ΔBCI
=>\(\widehat{ABI}=\widehat{CBI}\)
mà tia BI nằm giữa hai tia BA và BC
nên BI là tia phân giác của góc ABC
b: Ta có: ΔBAI=ΔBCI
=>\(\widehat{BIA}=\widehat{BIC}\)
mà \(\widehat{BIA}+\widehat{BIC}=180^0\)(hai góc kề bù)
nên \(\widehat{BIA}=\widehat{BIC}=\dfrac{180^0}{2}=90^0\)
=>BI\(\perp\)AC
c: Ta có: ΔBIA=ΔBIC
=>IA=IC
mà I nằm giữa A và C
nên I là trung điểm của AC
1/ Vì ở đó rất rộng người đông, tránh được sự lăm le của kẻ thù, với lại ở đó là ngoài tầm kiểm soát của địch, quân linh được cố định
ở đó mỏng yéu. Ta dễ dàng tìm được nhân tài, cung cấp đủ lương thực, phuc hồi và phát trien quân đội dễ dàng.
2/ Nô tì là tầng lớp thấp kém nhất trong xã hội bao gồm cả người Việt, người Hoa dân tộc ít người. Pháp luật nhà Lê hạn chế nghiêm
ngặt việc ban mình làm nô hoặc bức dân tộc tự do làm nô tì. Nhờ vậy, số lượng nô tì giảm.
Theo đề bài
\(\frac{a}{5}=\frac{b}{3}=\frac{c}{2}\Rightarrow\frac{a}{5}.\frac{b}{3}=\left(\frac{c}{2}\right)^2\Rightarrow\frac{a.b}{15}=\frac{c^2}{4}=\frac{a.b-c^2}{15-4}=\frac{11}{11}=1\)
\(\Rightarrow\frac{c^2}{4}=1\Rightarrow c^2=4\Rightarrow c=\pm2\)
+ Với c=-2
\(\Rightarrow\frac{a}{5}=\frac{b}{3}=\frac{-2}{2}=-1\Rightarrow a=-5;b=-3\)
+ Với c=2
\(\Rightarrow\frac{a}{5}=\frac{b}{3}=\frac{2}{2}=1\Rightarrow a=5;b=3\)
Bài 1:
Vì AD là p/g góc A nên \(\widehat{A_1}=\widehat{A_2}=\dfrac{1}{2}\widehat{BAC}=30^0\)
Mà \(\widehat{A_2}+\widehat{C}+\widehat{D_1}=180^0\Rightarrow\widehat{D_1}=180^0-30^0-40^0=110^0\)
Mà AE//BC nên \(\widehat{EAD}=\widehat{D_1}=110^0\left(so.le.trong\right)\)
Vì DE//AC nên \(\widehat{A_2}=\widehat{D_2}=30^0\left(so.le.trong\right);\widehat{D_3}=\widehat{C}=40^0\left(đồng.vị\right)\)
Vì AE//BC nên \(\widehat{D_3}=\widehat{E}=40^0\)
Vậy các góc tg ADE là \(\widehat{A}=110^0;\widehat{D}=30^0;\widehat{E}=40^0\)
Các loại môi trường tự nhiên của châu Phi là:
- môi trường xích đạo ẩm
- môi trường nhiệt đới
- môi trường hoang mạc
- môi trường địa trung hải và ở phần cực Bắc và phần cực Nam Châu Phi
\(x^2+4x+y^2-2xy+x^2+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x+2\right)^2=0\)
vì \(\left(x-y\right)^2\ge0;\left(x+2\right)^2\ge0\)nên
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=-2\end{cases}\Rightarrow}x=y=-2}\)