Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{x-1}{2000}-1+\frac{x-2}{1999}-1+\frac{x-3}{1998}-1+....+\frac{x-1999}{2}-1=0\)
\(\Leftrightarrow\frac{x-2001}{2000}+\frac{x-2001}{1999}+\frac{x-2001}{1998}+....+\frac{x-2001}{2}=0\)
\(\Leftrightarrow\left(x-2001\right)\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+...+\frac{1}{2}\right)=0\)
\(\Leftrightarrow x-2001=0\)
\(\Leftrightarrow x=2001\)
1) =\(x^7-x+x^2+x\)+1
=\(x\left(x^6-1\right)+\left(x^2+x+1\right)\)
=\(x\left(x^3-1\right)\left(x^3+1\right)\)\(+\left(x^2+x+1\right)\)
=x(x^3+1)(x-1)(x^2+x+1)+(x^2+x+1)
=[(x^4+x)(x-1)+1](x^2+x+1)
=(x^5-x^4+x^2-x)(x^2+x+1)
Trả lời:
1, x7 + x2 + 1
= x7 + x2 + 1 + x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - x
= ( x7 + x6 + x5 ) - ( x6 + x5 + x4 ) + ( x4 + x3 + x2 ) - ( x3 + x2 + x ) + ( x2 + x + 1 )
= x5 ( x2 + x + 1 ) - x4 ( x2 + x + 1 ) + x2 ( x2 + x + 1 ) - x ( x2 + x + 1 ) + ( x2 + x + 1 )
= ( x2 + x + 1 )( x5 - x4 + x2 - x + 1 )
b, x8 + x7 + 1
= x8 + x7 + 1 + x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - x
= ( x8 + x7 + x6 ) - ( x6 + x5 + x4 ) + ( x5 + x4 + x3 ) - ( x3 + x2 + x ) + ( x2 + x + 1 )
= x6 ( x2 + x + 1 ) - x4 ( x2 + x + 1 ) + x3 ( x2 + x + 1 ) - x ( x2 + x + 1 ) + ( x2 + x + 1 )
= ( x2 + x + 1 )( x6 - x4 + x3 - x + 1 )
Đặt \(A=1-x+x^2-x^3+...-x^{1999}+x^{2000}\)
\(B=1+x+x^2+x^3+...+x^{1999}+x^{2000}\)
Ta có : \(\left(x^2-1\right).P\left(x\right)=\left(x+1\right)A\left(x-1\right)B\)
\(=\left(x^{2001}+1\right)\left(x^{2001}-1\right)\)
\(=\left(x^{2001}\right)^2-1=\left(x^2\right)^{2001}-1^{2001}\)
\(=\left(x^2-1\right)\left(x^{4000}+x^{3998}+x^{3996}+...+x^2+1\right)\)
\(\Rightarrow P\left(x\right)=x^{4000}+x^{3998}+...+x^2+1\)
Theo đề bài ta có : \(P\left(x\right)=a_o+a_1x+...+a_{4000}x^{4000}\)
Do đó : hệ số chẵn sẽ = 1, hệ số lẻ = 0
\(\Rightarrow a_{2001}=0\)
Chúc bạn học tốt !!