Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 \(\Delta\) vuông \(ABH\) và \(DBH\) có:
\(\widehat{AHB}=\widehat{DHB}=90^0\)
\(AH=DH\left(gt\right)\)
Cạnh BH chung
=> \(\Delta ABH=\Delta DBH\) (cạnh huyền - cạnh góc vuông).
=> \(AB=DB\) (2 cạnh tương ứng)
Chúc bạn học tốt!
Bạn ơi câu a hình như bạn ghi sai đề rồi, phải là chứng Minh DC bằng EB chứ. Bạn xem lại hộ mình nhé nếu có gì mình xin lỗi ha
Nếu là đề sai theo mình là như vậy nè:
xét 2 Tam giác ABE và ACD có:
AE = AC (gt)
AB = AD(gt)
Â1 = Â2 (đối đỉnh)
suy ra Tam giác ABE = Tam giác ADC
Câu b
Vì 2 Tam giác ở câu a ta mới chứng Minh là bằng nhau nên ta có:
bạn tự vẽ hình và kí hiệu hình nhăn
ta có: góc D1 = góc B1 (2 góc tương ứng)
mà 2 góc này ở vị tí so le trong
suy ra BC // DE
Xét \(\Delta ABC\) và \(\Delta ADE\) có:
\(AB=AD\left(gt\right)\)
\(\widehat{BAC}=\widehat{DAE}\) ( tính chất 2 góc đối đỉnh )
\(AC=AE\left(gt\right)\)
Vậy \(\Delta ABC=\) \(\Delta ADE\left(c.g.c\right)\)
\(\Rightarrow\widehat{C}=\widehat{E}\) ( 2 góc tương ứng )
Xét \(\Delta MAC\) và \(\Delta NAE\) có:
\(AC=AE\left(gt\right)\)
\(\widehat{C}=\widehat{E}\left(cmt\right)\)
\(CM=EN\left(gt\right)\)
Vậy \(\Delta MAC=\Delta NAE\left(c.g.c\right)\)
\(\Rightarrow\widehat{MAC}=\widehat{MAE}\) ( 2 góc tương ứng )
Ta có: \(\widehat{MAC}+\widehat{CAD}+\widehat{DAN}=\widehat{NAE}+\widehat{DAN}+\widehat{CAD}\)
\(\Rightarrow\widehat{MAN}=\widehat{CAE}\)
\(\Rightarrow\) 3 điểm \(M,A,N\) thẳng hàng.
Xét △ABC và △ADE ta có:⎧⎪⎨⎪⎩AB = AD (gt)∠BAC = ∠EAD (đđ)AC = AE (gt)⇒△ABC = △AED (c.g.c) {AB = AD (gt)∠BAC = ∠EAD (đđ)AC = AE (gt)⇒△ABC = △AED (c.g.c)
⇒ ∠ABC = ∠AED (2 góc tương ứng)
Xét △ACM và △AEN ta có:
⎧⎪⎨⎪⎩CM = EN (gt)∠ACM = ∠AEN (cmt)AC = AE (gt)⇒△ACM = △AEN (c.g.c) {CM = EN (gt)∠ACM = ∠AEN (cmt)AC = AE (gt)⇒△ACM = △AEN (c.g.c)
⇒ ∠CAM = ∠EAN (2 góc tương ứng)
Mà ∠CAM + ∠CAN = 180o
⇒ ∠EAN + ∠CAN = 180o
⇒ ∠MAN = 180o
⇒ Ba điểm M, A, N thẳng hàng (đcpm).
Bạn tự vẽ hình nha !
Xét \(\Delta ABC\) và \(\Delta ADE\) có: \(AB=AD\left(gt\right)\), \(AC=AE\left(gt\right)\), \(\widehat{BAC}=\widehat{DAE}\)(đối đỉnh)
\(\Rightarrow\Delta BAC=\Delta DAE\left(c.g.c\right)\)\(\Rightarrow\widehat{ABC}=\widehat{ADE}\) và \(BC=DE\)
Mà M,N là trung điểm của BC,DE suy ra BM=DN
Kết hợp với AB=AD ta suy ra \(\Delta ABM=\Delta ADN\left(c.g.c\right)\)\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) suy ra M,A,N thẳng hàng
a/ Xét ΔADE và ΔABC ta có:
AE = AC (GT)
\(\widehat{EAD}=\widehat{BAC}\) (đối đỉnh)
AD = AB (GT)
=> ΔADE = ΔABC (c - c - c)
=> \(\widehat{E}=\widehat{C}\) (2 góc tương ứng)
Mà 2 góc này lại là 2 góc so le trong
=> DE / BC
b)