K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

Đặt \(P=x+y+\frac{1}{x}+\frac{1}{y}\)

\(=x+y+\frac{1}{4x}+\frac{3}{4x}+\frac{1}{4y}+\frac{3}{4y}\)

\(=\left(x+\frac{1}{4x}\right)+\left(y+\frac{1}{4y}\right)+\left(\frac{3}{4x}+\frac{3}{4y}\right)\)

Áp dụng bđt AM-GM cho 2 số thực dương x,y ta được:
\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=1\left(1\right)\)

\(y+\frac{1}{4y}\ge2\sqrt{y.\frac{1}{4y}}=1\left(2\right)\)

\(\frac{3}{4x}+\frac{3}{4y}\ge2\sqrt{\frac{3}{4x}.\frac{3}{4y}}=\frac{3}{2\sqrt{xy}}\left(3\right)\)

Áp dụng bđt AM-GM ta có:

\(\sqrt{xy}\le\frac{x+y}{2}=\frac{1}{2}\left(4\right)\)

Thay (4) vào (3) ta có \(\frac{3}{4x}+\frac{3}{4y}\ge3\left(5\right)\)

(1)+(2)+(5) ta được: \(P\ge3\)

Dấu"="Xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

6 tháng 2 2019

Em chỉ biết chữa lại thôi chứ không biết tìm lỗi sai =_=. Anh/chị thông cảm ạ.

      Lời giải:

Lời giải trên chưa chính xác.

*Chữa lại:

\(M=\left(\frac{4}{x}+9x\right)+y-9x\ge12+y-9x\)

\(\ge12+y-9\left(1-\frac{1}{y}\right)=12+y-9+\frac{9}{y}\)

\(=3+\left(y+\frac{9}{y}\right)\ge3+2\sqrt{y.\frac{9}{y}}=9\)

Dấu "=" xảy ra khi \(x=\frac{2}{3};y=3\)

Vậy ....

7 tháng 6 2018

1/ Đặt \(\hept{\begin{cases}\sqrt{x-2013}=a\\\sqrt{x-2014}=b\end{cases}}\)

Thì ta có:

\(\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}=\frac{a}{a^2+2015}+\frac{b}{b^2+2014}\)

\(\le\frac{a}{2a\sqrt{2015}}+\frac{b}{2b\sqrt{2014}}=\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)

7 tháng 6 2018

2/ \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)

\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)\)

\(=\frac{3}{4}\)

18 tháng 9 2018

cho mk đính chính lại cái đề nha 

x,y,z khác 0

18 tháng 9 2018

Ta có: (căn x+y)2=(căn x+z + căn y+x)2
suy ra:x+y=(căn x+z)+2(căn x+z)(căn y+z)+(căn y+z)2
suy ra:x+y=x+z+y+z+2[căn (x+z)(y+z)]
suy ra:-z=căn (x+z)(y+z)
suy ra:(-z)2=[căn (x+z)(y+z)]2
suy ra:z2=(x+z)(y+z)
suy ra:z2=xy+xz+yz+z2
suy ra:xy+yz+xz=0
suy ra:(xy+yz+xz)/xyz=0(vì x,y,z khác 0)
suy ra:xy/xyz+yz/xyz+xz/xyz=0
suy ra:1/x+1/y+1/z=0(ĐPCM)
K CHO MÌNH VỚI NHA

3 tháng 9 2017

Cho abc=1 va a3>36.CMR:a23+b2+c2>ab+bc+ca}

Lời giải:

VT−VP=a24+b2+c2−ab−bc+2bc+a212=(a2−b−c)2+a2−36bc12>0⇒ đpcm

Cách khác:

Từ giả thiết suy ra a>0 và bc>0. Bất đẳng thức cần chứng minh tương đương với

a23+(b+c)2−3bc−a(b+c)≥0⟺13+(b+ca)2−b+ca−3a3≥0

Vì a3>36 nên

10 tháng 3 2020

Em dùng AM-GM nhá,em ko dùng cosi đâu ha :)

\(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)

\(=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\left(\frac{x}{\sqrt{y}}+\sqrt{y}\right)+\left(\frac{y}{\sqrt{x}}+\sqrt{x}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)

\(\ge2\sqrt{x}+2\sqrt{y}-\left(\sqrt{x}+\sqrt{y}\right)=\sqrt{x}+\sqrt{y}\)

Lại có:

\(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)

\(=\frac{1-y}{\sqrt{y}}+\frac{1-x}{\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)

Khi đó:\(2S\ge\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{2}{\sqrt[4]{xy}}\ge\frac{2}{\sqrt{\frac{x+y}{2}}}=2\sqrt{2}\Rightarrow S\ge\sqrt{2}\)

Dấu "=" xảy ra tại x=y=1/2

10 tháng 9 2021

làm r mà bạn ei

10 tháng 9 2021

Chưa mà bạn

19 tháng 6 2017

có: \(x\left(2x-3\right)^2\ge0\Leftrightarrow4x^3-12x^2+9x\ge0\Leftrightarrow4x^3-12x^2+12x-4\ge3x-4\)

\(\Leftrightarrow4\left(x-1\right)^3\ge3x-4\)

\(\Leftrightarrow\left(1-x\right)^3\le1-\frac{3}{4}x\).

tương tự và cộng lại ta có ngay đpcm.

Dấu = xảy ra khi 2 số bằng 1,5; 1 số bằng 0