Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AE là tia phân giác của góc BAD
➡️Góc BAE = góc EAD = góc BAD ÷ 2 (1)
Xét hình thang ABCD có BC // AD
➡️Góc AEB = góc EAD ( 2 góc so le trong) (2)
Từ (1) và (2) ➡️góc BAE = góc AEB
➡️∆ ABE cân tại B
➡️BA = BE (đpcm)
b, Vì ∆ ABE cân tại B
➡️BF là tia phân giác đồng thời là đg cao
➡️BF vuông góc với AE
Ta có BF là tia phân giác đồng thời là đg trung tuyến
➡️AF = EF = AE ÷ 2 = 8 ÷ 2 = 4 (cm)
Xét ∆ ABF vuông tại F
➡️AF2 + BF2 = AB2 ( pitago)
➡️BF2 = AB2 - AF2
➡️BF2 = 52 - 42
➡️BF = 3 (cm)
Hok tốt nhé~
Trên tia đối tia AB lấy M sao cho AM=KC
ΔMAD = ΔKCD (c.g.c) ⇒ ˆMDA = ˆKDC⇒ˆMDK = ˆADC = 90∘
Ta có: ˆMDA+ˆAMD=90∘;ˆMDE+ˆEDK=90∘MDA^+AMD^=90∘;MDE^+EDK^=90∘
Mà ˆMDA=ˆKDC=ˆEDK⇒ˆEMD=ˆEDM⇒DE=ME=MA+EA=CK+EAMDA^=KDC^=EDK^⇒EMD^=EDM^⇒DE=ME=MA+EA=CK+EA
a: Xét ΔABE có \(\widehat{BAE}=\widehat{BEA}\left(=\widehat{DAE}\right)\)
nên ΔABE cân tại B
hay BA=BE
b: Ta có: ΔBAE cân tại B
mà BF là đường phân giác ứng với cạnh AC
nên BF là đường cao ứng với cạnh AC
Xét tam giác ABC và BAD có :
AB : chung
\(\widehat{BAD}=\widehat{ABC}\)
AD = BC
( ABCD là hình thang cân )
\(\Rightarrow\Delta ABC=\Delta BAD\)
\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)
\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB
AE+ KC ???????
j z pn