Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(6a^2-ab-15b^2=0\)
\(\Leftrightarrow6a^2-10ab+9ab-15b^2=0\)
\(\Leftrightarrow2a\left(3a-5b\right)+3b\left(3a-5b\right)=0\)
\(\Leftrightarrow\left(2a+3b\right)\left(3a-5b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=\frac{-3}{2}b\\a=\frac{5}{3}b\end{cases}}\)
-TH1: \(a=\frac{-3}{2}b\) thay vào M ta đc
\(M=\frac{11.\left(\frac{-3}{2}b\right)^2-2b.\frac{-3}{2}b+9b^2}{5\left(\frac{-3}{2}b\right)^2+3b.\frac{-3}{2}b+6b^2}=...\)
Tương tự cho TH2.
BÀi 3: b) Theo đề bài ta có Q(1) = 5; Q(14) = 9
Gọi số dư Q(x) chia cho (x-1)(x-14) là ax+b
=> Q(x) = P(x).(x-1)(x-14) + ax+b
Do đó Q(1) = P(x).(1-1)(1-14) + a.1 + b = a+b => a+b=5
và Q(14) = P(x).(14-1)(14-14) + a.14 + b = 14a+b => 14a+b=9
Giải hệ \(\hept{\begin{cases}a+b=5\\14a+b=9\end{cases}}\) tìm đc \(a=\frac{4}{13};b=\frac{61}{13}\)
Vậy số dư là \(\frac{4}{13}x+\frac{61}{13}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1: Mk nghĩ đề sai
Bài 2: Đáp án: 153, 370, 371, 407.
Bài 3: Đáp án: a = 7, b = 13, c = -3,4375
Muốn biết cách trình bày thì lên Mail hỏi nhé Manh
Gọi x là số tháng bạn Châu gửi với lãi suất 0,7% , y là số tháng gửi với lãi suất 0,9% . Vậy số tháng mà bạn Châu gửi tiết kiệm : x+y+6 (tháng)
Khi đó, số tiền cả vốn lẫn lãi bạn Châu nhận được khi gửi với lãi suất 0,7% trong x tháng : \(T_1=5000000\left(1+0,7\%\right)^x\)
Số tiền cả vốn lẫn lãi bạn Châu nhận được khi gửi với lãi suất 1,15% trong nửa năm (6 tháng) là : \(T_2=T_1.\left(1+1,15\%\right)^6\)
Số tiền cả vốn lẫn lãi bạn Châu nhận được khi gửi với lãi suất 0,9% trong y tháng : \(T_3=T_2\left(1+0,9\%\right)^y\)
Suy ra phương trình: \(5000000.\left(1+0,7\%\right)^x.\left(1+1,15\%\right)^6.\left(1+0,9\%\right)^y=5747478,359\)
1. Nhập phương trình trên vào máy tính
2.Nhấn SHIFT SOLVE , máy hỏi Y? , nhập 1 = ; X? , nhập 1 = , kết quả trả lại được x là một số không nguyên (loại)
3. Tiếp tục nhấn SHIFT SOLVE , tiếp tục nhập các giá trị của y = 2,3,4,5,.... cho đến khi x nhận giá trị nguyên thì dừng.
4. Tìm được y = 4 , x = 5
Vậy số tháng bạn Châu gửi tiết kiệm : 5 + 4 + 6 = 15 (tháng)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Ta có: \(P=\frac{1}{1+x^2}+\frac{4}{4+y^2}=\frac{1}{1+x^2}+\frac{1}{1+\frac{y^2}{4}}\)
Đặt \(\left(x;\frac{y}{2}\right)=\left(a;b\right)\left(a,b>0\right)\)
\(\Rightarrow\hept{\begin{cases}P=\frac{1}{1+a^2}+\frac{1}{1+b^2}+2ab\\ab\ge1\end{cases}}\)
Ta có: \(P=\frac{1}{1+a^2}+\frac{1}{1+b^2}+2ab\)
\(\ge\frac{1}{ab+a^2}+\frac{1}{ab+b^2}+2ab=\frac{1}{ab}+2ab\)
\(=\left(\frac{1}{ab}+ab\right)+ab\ge2+1=3\)
Dấu "=" xảy ra khi: \(ab=\frac{1}{ab}\Rightarrow ab=1\Rightarrow xy=2\)
Bài 3:
Đặt \(\left(a-1;b-1;c-1\right)=\left(x;y;z\right)\left(x,y,z>1\right)\)
Khi đó:
\(BĐTCCM\Leftrightarrow\frac{\left(x+1\right)^2}{y}+\frac{\left(y+1\right)^2}{z}+\frac{\left(z+1\right)^2}{x}\ge12\)
Thật vậy vì ta có:
\(VT=\frac{\left(x+1\right)^2}{y}+\frac{\left(y+1\right)^2}{z}+\frac{\left(z+1\right)^2}{x}\)
\(=\frac{x^2+2x+1}{y}+\frac{y^2+2y+1}{z}+\frac{z^2+2z+1}{x}\)
\(=\left(\frac{2x}{y}+\frac{2y}{z}+\frac{2z}{x}\right)+\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Áp dụng BĐT Cauchy ta có:
\(VT\ge3\sqrt[3]{\frac{2x}{y}\cdot\frac{2y}{z}\cdot\frac{2z}{x}}+6\sqrt[6]{\frac{x^2}{y}\cdot\frac{y^2}{z}\cdot\frac{z^2}{x}\cdot\frac{1}{x}\cdot\frac{1}{y}\cdot\frac{1}{z}}=6+6=12\)
Dấu "=" xảy ra khi: \(x=y=z\Leftrightarrow a=b=c\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1, \(x^3=\left(7+\sqrt{\frac{49}{8}}\right)+\left(7-\sqrt{\frac{49}{8}}\right)+3x\sqrt[3]{\left(7+\sqrt{\frac{49}{8}}\right)\left(7-\sqrt{\frac{49}{8}}\right)}\)
\(=14+3x\cdot\frac{7}{2}=14+\frac{21x}{2}\)
\(\Leftrightarrow x^3-\frac{21}{2}x-14=0\)
Ta có: \(f\left(x\right)=\left(2x^3-21-29\right)^{2019}=\left[2\left(x^3-\frac{21}{2}x-14\right)-1\right]^{2019}=\left(-1\right)^{2019}=-1\)
2, ta có: \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (bạn tự cm)
Áp dụng công thức trên ta được n=2016
3, \(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}=\frac{\sqrt[3]{\left(\sqrt{5}\right)^3-3.\left(\sqrt{5}\right)^2.2+3\sqrt{5}.2^2-2^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{9-2.3\sqrt{5}+5}}\)
\(=\frac{\sqrt[3]{\left(\sqrt{5}-2\right)^3}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}{\sqrt{5}+3-\sqrt{5}}=\frac{5-4}{3}=\frac{1}{3}\)
Thay x=1/3 vào A ta được;
\(A=3x^3+8x^2+2=3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2=3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Góp ý của anh là câu hình em chọn những câu mà có các ý nhỏ hơn để gợi ý cho các ý khác em nha =))
sol nhẹ vài bài
\(x\left(x+3\right)+y\left(y+3\right)=z\left(z+3\right)\)
\(\Leftrightarrow x\left(x+3\right)=\left(z-y\right)\left(z+y+3\right)\)
Khi đó \(z-y⋮x;z+y+3⋮x\)
Nếu \(z-y⋮x\Rightarrow z-y\ge x\Rightarrow z+y+3\ge x+2y+3>x+3\)
Trường hợp này loại
Khi đó \(z+y+3⋮x\) Đặt \(z+y+3=kx\Rightarrow x\left(x+3\right)=\left(z-y\right)kx\Rightarrow x+3=k\left(z-y\right)\)
Mặt khác \(\left(x+y\right)\left(x+y+3\right)=x\left(x+3\right)+y\left(y+3\right)+2xy>z\left(z+3\right)\)
\(\Rightarrow z< x+y\)
Giả sử rằng \(x\ge y\) Mà \(z\left(z+3\right)>x\left(x+3\right)\Rightarrow z>x>y\) mặt khác \(kx>z>x\Rightarrow k>1\)
Ta có:\(kx< \left(x+y\right)+y+3=x+2y+3\le3x+3< 4x\Rightarrow k< 4\Rightarrow k\in\left\{2;3\right\}\)
Xét \(k=2\Rightarrow z+y+3=2x\Rightarrow z=2x-y-3\) và \(x\left(x+3\right)=\left(z-y\right)2x\Leftrightarrow x+3=2z-2y\)
\(\Leftrightarrow x+3=4x-2y-6-2y\Leftrightarrow4y=3x-3\Rightarrow y⋮3\Rightarrow y=3\) tự tìm x;z
\(k=3\Rightarrow z+y+3=3x\Rightarrow z=3x-y-3\) và \(x\left(x+3\right)=\left(z-y\right)3x\Leftrightarrow x+3=3z-3y\Leftrightarrow x+3=3\left(3x-y-3\right)-3y\)
\(\Leftrightarrow x+3=9x-3y-9-3y\Leftrightarrow8x-12=6y\Leftrightarrow4x-4=3y\Rightarrow y=2\Rightarrow x=\frac{5}{2}\left(loai\right)\)
Vậy.............
Bài 1 : Giải :
a) Ta có : \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)
\(\Rightarrow x.\left(1-\sqrt[3]{2}\right)=\left(1-\sqrt[3]{2}\right)\left(1+\sqrt[3]{2}.1+\sqrt[3]{2^2}\right)\)
\(\Rightarrow x-x\sqrt[3]{2}=1^3-\left(\sqrt[3]{2}\right)^3=-1\)
\(\Rightarrow x+1=x\sqrt[3]{2}\)
\(\Rightarrow\left(x+1\right)^3=2x^3\)
\(\Rightarrow x^3-3x^2-3x-1=0\)
Khi đó ta có : \(A=x^5-4x^4+x^3-x^2-2x+2019\)
\(=x^5-3x^4-3x^3-x^2-x^4+3x^3+3x^2+x+x^3-3x^2-3x-1+2020\)
\(=x^2.\left(x^3-3x^2-3x-1\right)-x.\left(x^3-3x^2-3x-1\right)+\left(x^3-3x^2-3x-1\right)+2020\)
\(=2020\)
P/s : Tạm thời xí câu này đã tối về xí tiếp nha :))