Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: góc AMO+góc ANO=180 độ
=>AMON nội tiếp
2: ΔOAB cân tại O
mà OM là đường cao
nên M là trung điểm của AB
ΔOAC cân tại O
mà ON là đường cao
nên N là trung điểm của AC
=>NM là đừog trung bình
=>MN//BC
=>MN//AE
=>AMNE là hình thang cân
=>AM=EN; AN=EM
ΔAHB vuông tại H có HM là trung tuyến
nên HM=AB/2=MA=MB
ΔHAC vuông tại H có HN là trung tuyến
nên HN=AN=CN=AC/2
=>HM=EN; HN=EM
=>HMEN là hình bbình hành
=>K làtrung điểm của MN
=>IK vuông góc MN
=>IK vuông góc BC
3: goc MDE+gó MDH=180 độ
=>góc MDE=góc MBH
=>BMDH nội tiếp
=>góc MDB=góc MHB=góc MBH
=>góc MDB=góc MDE
=>DM là phân giác của góc BDE
tại sao phải đi cm M,N lần lượt là trung điểm của AB,AC trg khi nó có sẵn trg đề bài?
a) Ta có: \(\angle AKB=\angle AIB=90\Rightarrow AKIB\) nội tiếp
b) Trong (O) có DE là dây cung không đi qua O và M là trung điểm DE
\(\Rightarrow OM\bot DE\)
CEAD nội tiếp \(\Rightarrow\angle CED=\angle CAD\)
CEBD nội tiếp \(\Rightarrow\angle CDE=\angle CBE\)
mà \(\angle CAD=\angle CBE\) (AKIB nội tiếp)
\(\Rightarrow\angle CED=\angle CDE\Rightarrow\Delta CDE\) cân tại C mà M là trung điểm DE
\(\Rightarrow CM\bot DE\Rightarrow C,O,M\) thẳng hàng
c) AKIB nội tiếp \(\Rightarrow\angle IKB=\angle IAB=\angle DAB=\angle DEB\)
\(\Rightarrow\) \(IK\parallel DE\)
a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800
=> Tứ giác BEHF nội tiếp.
b, Xét tứ giác AFEC có :
góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)
=> Tứ giác AFEC nội tiếp
a: ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
=>AM*AB=AN*AC
=>AM/AC=AN/AB
=>góc AMN=góc ACB
=>góc NMB+góc NCB=180 độ
=>NMBC nội tiếp
b: kẻ đường kính AL
góc ACL=90 độ
AC*AN=AH^2
ΔAIN đồng dạng với ΔACE
=>AI/AC=AN/AE
=>AI*AE=AH^2
góc ADE=90 độ
=>ΔADE vuông tại D
=>AI*AE=AD^2=AH^2
=>AD=AH