Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi E là giao điểm AB và CD
\(\Rightarrow E=\left(SAB\right)\cap\left(SCD\right)\)
\(\Rightarrow SE=\left(SAB\right)\cap\left(SCD\right)\)
b.
Do M là trung điểm SC, N là trung điểm BC
\(\Rightarrow MN\) là đường trung bình tam giác SBC
\(\Rightarrow MN||SB\)
Mà \(SB\in\left(SBD\right)\Rightarrow MN||\left(SBD\right)\)
c.
Trong mp (ABCD), nối AN cắt CD kéo dài tại F
Trong mp (SCD), nối FM kéo dài cắt SD tại G
\(\Rightarrow G=SD\cap\left(AMN\right)\)
a) Tìm (SAD) ∩ (SBC)
Gọi E= AD ∩ BC. Ta có:
Do đó E ∈ (SAD) ∩ (SBC).
mà S ∈ (SAD) ∩ (SBC).
⇒ SE = (SAD) ∩ (SBC)
b) Tìm SD ∩ (AMN)
+ Tìm giao tuyến của (SAD) và (AMN) :
Trong mp (SBE), gọi F = MN ∩ SE :
F ∈ SE ⊂ (SAD) ⇒ F ∈ (SAD)
F ∈ MN ⊂ (AMN) ⇒ F ∈ (AMN)
⇒ F ∈ (SAD) ∩ (AMN)
⇒ AF = (SAD) ∩ (AMN).
+ Trong mp (SAD), gọi AF ∩ SD = P
⇒ P = SD ∩ (AMN).
c) Tìm thiết diện với mp(AMN):
(AMN) ∩ (SAB) = AM;
(AMN) ∩ (SBC) = MN;
(AMN) ∩ (SCD) = NP
(AMN) ∩ (SAD) = PA.
⇒ Thiết diện cần tìm là tứ giác AMNP.
OP là đường trung bình tam giác BCD \(\Rightarrow OP//CD\)
Gọi Q là trung điểm SC \(\Rightarrow\) NQ là đường trung bình tam giác SCD \(\Rightarrow NQ//CD//OP\)
\(\Rightarrow NQ=\left(NPO\right)\cap\left(SCD\right)\)
Trong mp (SBD), nối NM kéo dài cắt SB tại G
\(\Rightarrow AG=\left(SAB\right)\cap\left(AMN\right)\)
Trong mp (ABCD), nối PM kéo dài cắt AD tại H
Trong mp (SAD), nối HN cắt SA tại E
\(\Rightarrow E=SA\cap\left(MNP\right)\)
Nhìn đi nhìn lại cũng ko biết ME//PN kiểu gì
Dễ dàng chứng minh EG=EN, mà GM=3MP nên ME không thể song song PN
Gọi F là giao điểm của MP và AB, I là giao điểm MP và CD
Trong mp (SCD), nối IN cắt SC tại J
Thiết diện là đa giác FENJP
P/s: Ngu phần hình ko gian nên chỉ giúp được thế này thôi nhó :)
a, Gọi O là giao điểm của AC và BD
⇒ SO = (SAC) \(\cap\) (SBD)
b, (SAB) và (SCD) cùng đi qua điểm S và lần lượt chứa hai đường thẳng AB & CD, mà ta lại có AB // CD
⇒ (SAB) \(\cap\) (SCD) = Sx. trong đó Sx là đường thẳng đi qua S và song song với AB và CD
c, Trong (SAC) gọi K là giao điểm của SO và AM
⇒ AM \(\cap\) (SBD) = K
d, Trong (ABCD) gọi I = DN \(\cap\) BC
⇒ DN \(\cap\) (SBC) = I
a) (SAD) ∩ (SBC) = SE
b) Trong (SBE): MN ∩ SE = F
Trong (SAE): AF ∩ SD = P là điểm cần tìm
c) Thiết diện là tứ giác AMNP