K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2021

4: Đặt \(x=\dfrac{a+b}{a-b};y=\dfrac{b+c}{b-c};z=\dfrac{c+a}{c-a}\).

Ta có \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\dfrac{2a.2b.2c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

\(\Rightarrow xy+yz+zx=-1\).

Bất đẳng thức đã cho tương đương:

\(x^2+y^2+z^2\ge2\Leftrightarrow\left(x+y+z\right)^2-2\left(xy+yz+zx\right)-2\ge0\Leftrightarrow\left(x+y+z\right)^2\ge0\) (luôn đúng).

Vậy ta có đpcm

12 tháng 4 2021

mình xí câu 45,47,51 :>

45. a) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{2}{b}=\dfrac{1}{a}+\dfrac{4}{2b}\ge\dfrac{\left(1+2\right)^2}{a+2b}=\dfrac{9}{a+2b}\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b

b) Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{\left(1+1+1\right)^2}{a+b+b}=\dfrac{9}{a+2b}\)(1)

\(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{b+c+c}=\dfrac{9}{b+2c}\)(2)

\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{\left(1+1+1\right)^2}{c+a+a}=\dfrac{9}{c+2a}\)(3)

Cộng (1),(2),(3) theo vế ta có đpcm

Đẳng thức xảy ra <=> a=b=c

22 tháng 9 2023

a, \(\dfrac{2^3-x^3}{x\left(x^2+2x+4\right)}\) = \(\dfrac{\left(2-x\right)\left(x^2+2x+4\right)}{x\left(x^2+2x+4\right)}\) = \(\dfrac{2-x}{x}\)=\(\dfrac{x-2}{-x}\)(đpcm)

22 tháng 9 2023

b, \(\dfrac{-3x\left(x-y\right)}{y^2-x^2}\) (\(x\) \(\ne\) \(\pm\) y)

\(\dfrac{-3x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)

\(\dfrac{3x\left(y-x\right)}{\left(y-x\right)\left(y+x\right)}\)

\(\dfrac{3x}{x+y}\) (đpcm)

a) Xét ΔAEN có 

D là trung điểm của AE

DM//EN

Do đó: M là trung điểm của AN

b) Hình thang DMCB có 

E là trung điểm của DB

EN//DM//CB

Do đó: N là trung điểm của MC

Suy ra: MN=NC

mà MN=AM

nên AM=MN=NC

c) Xét hình thang DMCB có 

E là trung điểm của DB

N là trung điểm của MC

Do đó: EN là đường trung bình của hình thang DMCB

Suy ra: \(EN=\dfrac{DM+CB}{2}\)

hay \(2EN=DM+BC\)

6 tháng 8 2021

a/ Xét △AEN có:

\(DM\text{//}EN\left(gt\right)\)

- D là trung điểm của AE \(\left(AD=AE\right)\)

=> DM là đường trung bình của △AEN. Vậy: M là trung điểm của AN (đpcm)

b/ Tứ giác BDMC có \(EN\text{ // }BC\left(gt\right)\) => Tứ giác BDMC là hình thang

 Hình thang BDMC có:

\(EN\text{ // }BC\left(gt\right)\)

- E là trung điểm của DB \(\left(DE=EB\right)\)

=> EN là đường trung bình của hình thang BDMC => N là trung điểm của MC hay \(MN=NC\)

- Mà \(AM=MN\left(cmt\right)\)

Vậy: \(AM=MN=NC\left(đpcm\right)\)

c/ - Ta có: EN là đường trung bình của hình thang BDMC (cmt)

=> \(EN=\dfrac{DM+BC}{2}\)

Vậy: \(2EN=2\cdot\dfrac{DN+BC}{2}=DN+BC\left(đpcm\right)\)

4.2:

a: x^2-x+1=x^2-x+1/4+3/4

=(x-1/2)^2+3/4>=3/4>0 với mọi x

=>x^2-x+1 ko có nghiệm

b: 3x-x^2-4

=-(x^2-3x+4)

=-(x^2-3x+9/4+7/4)

=-(x-3/2)^2-7/4<=-7/4<0 với mọi x

=>3x-x^2-4 ko có nghiệm

5:

a: x^2+y^2=25

x^2-y^2=7

=>x^2=(25+7)/2=16 và y^2=16-7=9

x^4+y^4=(x^2)^2+(y^2)^2

=16^2+9^2

=256+81

=337

b: x^2+y^2=(x+y)^2-2xy

=1^2-2*(-6)

=1+12=13

x^3+y^3=(x+y)^3-3xy(x+y)

=1^3-3*1*(-6)

=1+18=19

 

8 tháng 8 2023

mik cảm ơn bạn nhiều vì đã giúp mik

 

31 tháng 7 2023

\(AB^2=AH^2+BH^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\left(Pitago\right)\)

\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\left(2\right)\left(Pitago\right)\)

\(\left(1\right),\left(2\right)\Rightarrow AC^2-CH^2=AB^2-BH^2\)

\(\Rightarrow AB^2+CH^2=AC^2+BH^2\)

\(\Rightarrow dpcm\)

31 tháng 7 2023

 Ta có \(AB^2-AC^2=\left(BH^2+AH^2\right)-\left(CH^2+AH^2\right)\) \(=BH^2-CH^2\) \(\Rightarrow AB^2+CH^2=AC^2+BH^2\), đpcm.

 (Bài này kết quả vẫn đúng nếu không có điều kiện tam giác ABC vuông tại A.)

26 tháng 10 2023

1)

\((x+2)(x+3)(x+4)(x+5)-24\\=[(x+2)(x+5)]\cdot[(x+3)(x+4)]-24\\=(x^2+7x+10)(x^2+7x+12)-24\)

Đặt \(x^2+7x+10=y\), khi đó biểu thức trở thành:

\(y(y+2)-24\\=y^2+2y-24\\=y^2+2y+1-25\\=(y+1)^2-5^2\\=(y+1-5)(y+1+5)\\=(y-4)(y+6)\\=(x^2+7x+10-4)(x^2+7x+10+6)\\=(x^2+7x+6)(x^2+7x+16)\)

2) Bạn xem lại đề!

17 tháng 11 2023

\(\dfrac{4x+2}{4x-2}+\dfrac{3-6x}{6x-6}\left(dkxd:x\ne\dfrac{1}{2};x\ne1\right)\)

\(=\dfrac{2\left(2x+1\right)}{2\left(2x-1\right)}+\dfrac{3\left(1-2x\right)}{6\left(x-1\right)}\)

\(=\dfrac{2x+1}{2x-1}+\dfrac{1-2x}{2\left(x-1\right)}\)

\(=\dfrac{2x+1}{2x-1}+\dfrac{1-2x}{2x-2}\)

\(=\dfrac{\left(2x+1\right)\left(2x-2\right)}{\left(2x-1\right)\left(2x-2\right)}+\dfrac{\left(1-2x\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x-2\right)}\)

\(=\dfrac{4x^2-2x-2}{\left(2x-1\right)\left(2x-2\right)}+\dfrac{-4x^2+4x-1}{\left(2x-1\right)\left(2x-2\right)}\)

\(=\dfrac{4x^2-2x-2-4x^2+4x-1}{\left(2x-1\right)\left(2x-2\right)}\)

\(=\dfrac{2x-3}{\left(2x-1\right)\left(2x-2\right)}\)

\(=\dfrac{2x-3}{4x^2-6x+2}\)