Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm 1 bài thôi nhé
Bài 5
\(a.1-2y+y^2=\left(1-y\right)^2\)
\(b.\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x-4\right)\left(x+6\right)\)
\(c.1-4x^2=1-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)
\(d.27+27x+9x^2+x^3=3^3+3.3^3.x+3.3.x^2+x^3=\left(3+x\right)^3\)
\(f.8x^3-12x^2y+6xy-y^3=\left(2x\right)^3-3.\left(2x\right)^2.y+3.2x.y-y^3=\left(2x-y\right)^3\)
Bài 4 :
a, \(x^3+3x^2-x-3=x^2\left(x+3\right)-\left(x+3\right)=\left(x+1\right)\left(x-1\right)\left(x+3\right)\)
b, bạn xem lại đề nhé
c, \(x^2-4x+4-y^2=\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)
d, \(5x+5-x^2+1=5\left(x+1\right)+\left(1-x\right)\left(x+1\right)=\left(x+1\right)\left(6-x\right)\)
b: \(\Leftrightarrow\left(2x-7\right)\left(3x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{3}\end{matrix}\right.\)
a: Xét tứ giác AEDF có
AE//DF
AF//DE
Do đó: AEDF là hình bình hành
mà \(\widehat{DAE}=90^0\)
nên AEDF là hình chữ nhật
Bài 2:
a: Xét ΔEHK và ΔGFI có
\(\widehat{EHK}=\widehat{GFI}\)
EH=GF
\(\widehat{E}=\stackrel\frown{G}\)
Do đó: ΔEHK=ΔGFI
Suy ra: EK=GI và KH=IF
Ta có: EK+KF=EF
GI+IH=GH
mà EF=GH
và EK=GI
nên KF=IH
Xét tứ giác FKHI có
FK=HI
HK=FI
Do đó: FKHI là hình bình hành
a)Đk:\(x\ne4\)
\(\dfrac{x^4}{4-x}+x^3+1=\dfrac{x^4+\left(x^3+1\right)\left(4-x\right)}{4-x}\)\(=\dfrac{x^4+\left(-x^4+4x^3+4-x\right)}{4-x}=\dfrac{4x^3-x+4}{4-x}\)
b) Đk: \(x\ne0;x\ne1\)
\(\dfrac{1}{x^2-x}+\dfrac{2x}{x-1}=\dfrac{1}{x\left(x-1\right)}+\dfrac{2x^2}{x\left(x-1\right)}=\dfrac{1+2x^2}{x\left(x-1\right)}\)
11)
\(\dfrac{2x}{x+2}\) \(\times\) \(\dfrac{x^{2^{ }}-4}{4}\) - \(\dfrac{x}{2}\)
= \(\dfrac{2x}{x+2}\) \(\times\) \(\dfrac{x^2-2^2}{4}\) - \(\dfrac{x}{2}\)
= \(\dfrac{2x}{x+2}\) \(\times\) \(\dfrac{\left(x-2\right)\left(x+2\right)}{4}\) - \(\dfrac{x}{2}\)
= \(\dfrac{x\left(x-3\right)}{2}\)
Bạn chú thích hơi quá lố :)
Ta có :( 5x - 3y + 4z ) . ( 5x - 3y - 4z ) \(=\left(5x-3y\right)^2-16z^2\)
\(=25x^2-30xy+9y^2-16z^2\)
Mà x^2=y^2 + z^2 nên ( 5x - 3y + 4z ) . ( 5x - 3y - 4z )\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)
\(=9x^2-30xy+25y^2=\left(3x-5y\right)^2\)
Học tốt !
\(-7\left(x-1\right)-8\left(x+59\right)=0\)
\(\Rightarrow-7x+7-8x-472=0\)
\(\Rightarrow x\left(-7-8\right)+\left(7-472\right)=-15x-465=0\)
\(\Rightarrow-15x=0+465=465\Rightarrow x=465\div\left(-15\right)=-31\)
Vậy pt có biến \(x=-31\)
-7( x - 1 ) - 8( x + 59 ) = 0
⇔ -7x + 7 - 8x - 472 = 0
⇔ -15x - 465 = 0
⇔ -15x = 465
⇔ x = -31
Vậy tập nghiệm của phương trình là S = { -31 }