K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔAFB vuông tại F và ΔAEC vuông tại E có

góc A chung

=>ΔAFB đồng dạng với ΔAEC

b: ΔAFB đồng dạng với ΔAEC

=>AF/AE=AB/AC
=>AF*AC=AB*AE

=>AF/AB=AE/AC

=>ΔAFE đồng dạng với ΔABC

c: Xét ΔBDH vuông tại D và ΔBFC vuông tại Fco

góc DBH chung

=>ΔBDH đồng dạng với ΔBFC

19 tháng 4 2019

Hình bạn tự vẽ nhé  

a/ xét tam giác AEC và tam giác AFB ta có : 

A là góc chung 

góc AEC = góc AFB (=90 độ )

=> tam giác AEC ~ tam giác AFB (g.g) 

b) vì tam giác AEC ~ tam giác AFB ( cmt)

=> AE/AF=AC/AB => AE*AB = AF*AC 

c) xét tam giác BDH  và tam giác BFC ta có : 

góc B chung 

góc BDH = góc BFC (=90 độ)

=> tam giác BDH ~ tam giác BFC (g.g)

=>BH/BC=BD/BF => BH*BF=BC*BD (1)  

xét tam giác CHD và tam giác CBE ta có :

C là góc chung 

góc CDH = góc CEB (=90 độ )

=> tam giác  CHD ~ tam giác  CBE (g.g)

=> CH/CB= CD/CE => CH*CE=CB*CD (2) 

từ (1) và (2) => BH.BF +CH.CE=  BC.BD+ CB.CD =  BC ( BD +CD)= BC.BC= BC2 

=> BH.BF+CH.CE=BC2 (đpcm)

d)  xét tam giác AEH và tam giác AMD ta có :

A là góc chung 

góc AEH = góc AMD (= 90 độ )

=> t/g AEH ~t/g AMD (g.g)=> AE/AM=AH/AD (3) 

xét t/ g AFH và AND ta có :

A là góc chung 

góc AFH = góc AND (=90 độ )

=> t/g AFH ~ t/g AND (g.g) => AF/AN=AH/AD (4)

từ (3) và (4) => AE/AM=AF/AN 

=> EF // MN hay MN//EF ( định lý Ta - lét đảo )

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc BAD chung

=>ΔABD đồng dạng với ΔACE

b: ΔABD đồng dạng với ΔACE

=>AD/AE=AB/AC

=>AD/AB=AE/AC

=>ΔADE đồng dạng với ΔABC

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

b: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

=>góc ADE=góc ABC

6 tháng 5 2018

a)  Xét \(\Delta ABD\)và   \(\Delta ACE\)có:

    \(\widehat{ADB}=\widehat{AEC}=90^0\)

    \(\widehat{BAC}\) chung

suy ra:   \(\Delta ABD~\Delta ACE\)  (g.g)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AD}{AE}\)

\(\Rightarrow\)\(AB.AE=AC.AD\) 

b)   \(\frac{AB}{AC}=\frac{AD}{AE}\) (câu a)

\(\Rightarrow\)\(\frac{AE}{AC}=\frac{AD}{AB}\)

Xét  \(\Delta AED\)và    \(\Delta ACB\)có:

     \(\frac{AE}{AC}=\frac{AD}{AB}\) (cmt)

     \(\widehat{EAD}\) chung

suy ra:   \(\Delta AED~\Delta ACB\)  (g.g)

c)  Kẻ  \(HK\perp BC\) \(\left(K\in BC\right)\)

C/m:    \(\Delta BKH~\Delta BDC\)(g.g)  \(\Rightarrow\) \(\frac{BK}{BD}=\frac{BH}{BC}\)\(\Rightarrow\)\(BH.BD=BK.BC\) (1)

           \(\Delta CKH~\Delta CEB\)(g.g)   \(\Rightarrow\)\(\frac{CK}{CE}=\frac{CH}{CB}\)\(\Rightarrow\)\(CE.CH=CK.BC\) (2)

Lấy (1) + (2) theo vế ta được:   \(BH.BD+CE.CH=BK.BC+CK.BC=BC^2\) (đpcm)

2 tháng 4 2023

Giai dùm câu d