Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn gõ câu hỏi lên đây nhé, chụp ảnh là vi phạm nội quy đấy.
1.47
Tóm tắt ; a=g=10m/s^2( gia tốc của rơi tự do là g=9,81m/s^2 nhưng mk lấy là 10m/s^2 cho tròn số )
t1=5s
t2=3s
a) S1(chiều dài giêngs)=?
b)V=? (vận tốc của vật khi chạm đất )
c)S2(quảng đường vật rơi sau 3s)=?
Giải
a) S1=1/2.g.t1^2=1/2.10.5^2=125(m)
b)V=at=10.5=50(m/s)
c) S2=1/2.g.t2^2=1/2.10.3^2=45(m)
1.47
a) h = 1/2 gt2= 1/2.10.52= 125m
b) v= gt = 10.5 = 50m/s
c) quãng đường vật rơi trong 3s:
s1= 1/2gt2 = 1/2.10.32= 45m
quãng đường vật rơi trong 2s:
s2= 1/2gt2= 1/2.10.22= 20m
quãng đường vật rơi trong giây thứ 3 là:
s = s1 - s2 = 45 - 20 = 25m
bài 26: gọi quãng đường đi là S
=|> thời gian đi với v1: t1=S/12
thòi gia đi quãng đường với v2 là :t2=S/15
theo đề ta có pt: t1=t2+1
<=>\(\frac{S}{12}=\frac{S}{15}+1\)
<=> \(\frac{S}{60}=1\)
=> S=60km
2.4
gia tốc của hệ
\(\overrightarrow{a}=\dfrac{\overrightarrow{P_a}+\overrightarrow{P_b}+\overrightarrow{Q_a}+\overrightarrow{Q_b}+\overrightarrow{F_{msa}}+\overrightarrow{F_{msb}}}{m_a+m_b}\)
chiếu trên trục Ox có phương sogn song với mặt phẳng nghiêng chiều dương cùng chiều chuyển động
a=\(\dfrac{sin\alpha.P_a+sin\alpha.P_b-F_{msa}-F_{msb}}{m_1+m_2}\)
\(\Leftrightarrow a=sin\alpha.m_a.g+sin\alpha.m_b.g-k_a.cos\alpha m_a.g\)\(-k_b.cos\alpha.m_b.g\))/(m1+m2)
\(\Leftrightarrow\)\(a=\left(\dfrac{sin\alpha\left(m_a+m_b\right).g-cos\alpha.g\left(k_a.m_a+k_b.m_b\right)}{m_a+m_b}\right)\)
xét riêng vật A: các lực tác dụng vào A, trọng lực Pa, phản lực Qa, lực ma sát Fmsa, lực do vật B tác dụng vào khi trượt xuống F cùng chiều chuyển động
\(\overrightarrow{F}+\overrightarrow{Q_a}+\overrightarrow{P_a}+\overrightarrow{F_{msa}}=m.\overrightarrow{a}\)
chiếu lên chiều dương cùng chiều chuyển động phương sogn song với mặt phẳng
F=\(\dfrac{g.cos\alpha.\left(k_a-k_b\right).m_b.m_a}{m_a+m_b}\)
b) để hai vật trượt xuống a\(\ge\)0
\(\Leftrightarrow\)..........
2.4
b)
\(a\ge0\)
\(\Leftrightarrow\)sin\(\alpha.\left(m_a+m_b\right).g\ge g.cos\alpha.\left(k_a.m_a+k_b.m_b\right)\)
\(\Rightarrow tan\alpha\ge\dfrac{\left(k_a.m_a+k_b.m_b\right)}{\left(m_a+m_b\right)}\Rightarrow\alpha\ge....\)