Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì và ( hoặc và ) nên các đường thẳng: x = -3 và x = 3 là các tiệm cận đứng của đồ thị hàm số.
Vì và nên các đường thẳng: y = 0 là các tiệm cận ngang của đồ thị hàm số.
b) Hai tiệm cận đứng : ; tiệm cận ngang : .
c) Tiệm cận đứng : x = -1 ;
vì nên đồ thị hàm số không có tiệm cận ngang.
d) Hàm số xác định khi :
Vì ( hoặc ) nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
Vì nên đường thẳng y = 1 là tiệm cận ngang (về bên phải) của đồ thị hàm số.
Lời giải:
Câu 1:
Lưu ý tiệm cận đứng là \(x=\frac{3}{2}\) chứ không phải \(y=\frac{3}{2}\)
Ta có \(y=\sqrt{4x^2+mx+1}-(2x-1)=\frac{4x^2+mx+1-(2x-1)^2}{\sqrt{4x^2+mx+1}+2x-1}\)
\(\Leftrightarrow y=\frac{x(m+4)}{\sqrt{4x^2+mx+1}+2x-1}\)
Để ĐTHS có tiệm cận đứng \(x=\frac{3}{2}\) thì pt \(\sqrt{4x^2+mx+1}+2x-1=0\) phải có nghiệm là \(x=\frac{3}{2}\)
\(\Leftrightarrow \sqrt{10+\frac{3m}{2}}+2=0\) (vô lý vì vế trái luôn lớn hơn 0)
Do đó không tồn tại m thỏa mãn.
Câu 2:
Để đths có đúng một tiệm cận đứng thì có thể xảy 2 TH sau:
TH1: PT \(x^2-3x-m=0\) có nghiệm kép
\(\Leftrightarrow \Delta=9+4m=0\Leftrightarrow m=-\frac{9}{4}\)
\(y=\frac{x-1}{x^2-3x+\frac{9}{4}}=\frac{x-1}{(x-\frac{3}{2})^2}\) có TCĐ là \(x=\frac{3}{2}\) (thỏa mãn)
TH2: PT \(x^2-3x-m=0\) có hai nghiệm phân biệt trong đó có một nghiệm \(x=1\)
\(\Leftrightarrow 1^2-3.1-m=0\Leftrightarrow m=-2\)
Khi đó, \(y=\frac{x-1}{x^2-3x+2}=\frac{x-1}{(x-2)(x-1)}=\frac{1}{x-2}\) có TCĐ \(x=2\) (thỏa mãn)
Vậy tổng giá trị của $m$ thỏa mãn là:
\(\sum =\frac{-9}{4}+(-2)=\frac{-17}{4}\)
2.
\(-x^3+3x^2=k\)
\(y=-x^3+3x^2\)
\(y'=-3x^2+6x\)
\(y'=0\Leftrightarrow x=0,x=2\)
Kẻ bảng biến thiên.
Đường thẳng y = k cắt đồ thị hàm số \(\Leftrightarrow0< k< 2\)
1.
ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le1\\x\ge2\end{matrix}\right.\)
\(\lim\limits_{x\rightarrow1^-}\frac{2x+3\sqrt{x}+1}{\sqrt{x^2-3x+2}}=\infty\Rightarrow x=1\) là TCĐ
\(\lim\limits_{x\rightarrow2^+}\frac{2x+3\sqrt{x}+1}{\sqrt{x^2-3x+2}}=\infty\Rightarrow x=2\) là TCĐ
\(\lim\limits_{x\rightarrow+\infty}\frac{2x+3\sqrt{x}+1}{\sqrt{x^2-3x+2}}=2\Rightarrow y=2\) là TCN
Vậy ĐTHS có 3 tiệm cận
3.
\(\lim\limits_{x\rightarrow0}y=\infty\Rightarrow x=0\) là TCĐ
\(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{x^2+2x+9}+\sqrt{1-x}}{x}=-1\Rightarrow y=-1\) là TCN
ĐTHS có 2 tiệm cận
4.
\(\lim\limits_{x\rightarrow-2^+}y=\infty\Rightarrow x=-2\) là TCĐ
ĐTHS có 1 TCĐ (\(x=-3\) ko thuộc TXĐ của hàm số nên đó ko phải là TCĐ)
\(m=0\) hàm số không xác định
\(\lim\limits_{x\rightarrow-\infty}y=\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\sqrt{m^2x^2+m-1}}=\lim\limits_{x\rightarrow-\infty}\dfrac{1+\dfrac{1}{x}}{-\sqrt{m^2+\dfrac{m-1}{x^2}}}=\dfrac{-1}{\left|m\right|}\)
\(\)\(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\sqrt{m^2x^2+m-1}}=\lim\limits_{x\rightarrow+\infty}\dfrac{1+\dfrac{1}{x}}{\sqrt{m^2-\dfrac{m-1}{x^2}}}=\dfrac{1}{\left|m\right|}\)
\(\Rightarrow\) đồ thị hàm số luôn có 2 tiệm cận ngang
Để đồ thị hàm số có 4 tiệm cận thì cần có thêm 2 tiệm cận đứng
\(\Rightarrow m^2x^2+m-1=0\) có 2 nghiệm phân biệt
\(\Rightarrow x^2=\dfrac{1-m}{m^2}\) . Do \(x^2>0\Rightarrow1-m>0\Rightarrow m< 1\)
Vậy \(\left\{{}\begin{matrix}m< 1\\m\ne0\end{matrix}\right.\) thì đồ thị hàm số có 4 tiệm cận
1.
Điều kiện xác định của căn thức: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{1-1}{1}=0\Rightarrow y=0\) là 1 TCN
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{-1-1}{-1}=2\Rightarrow y=2\) là 1 TCN
\(\lim\limits_{x\rightarrow-5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}+5}{0}=+\infty\Rightarrow x=-5\) là 1 TCĐ
\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}-5}{0}=+\infty\Rightarrow x=5\) là 1 TCĐ
Hàm có 4 tiệm cận
2.
Căn thức của hàm luôn xác định
Ta có:
\(\lim\limits_{x\rightarrow2}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\lim\limits_{x\rightarrow2}\dfrac{\left(2x-1\right)^2-\left(x^2+x+3\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(3x+1\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{3x+1}{\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}=\dfrac{-7}{6}\) hữu hạn
\(\Rightarrow x=2\) ko phải TCĐ
\(\lim\limits_{x\rightarrow3}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\dfrac{5-\sqrt{15}}{0}=+\infty\)
\(\Rightarrow x=3\) là tiệm cận đứng duy nhất