K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 10 2019

\(\Leftrightarrow\frac{x}{5}+\frac{y}{6}+\frac{z}{4}\le1\)

Đặt \(\left(\frac{x}{5};\frac{y}{6};\frac{z}{4}\right)=\left(a;b;c\right)\Rightarrow0\le a;b;c\le1\)\(a+b+c\le1\)

\(T=25a^2+36b^2+16c^2-20a-24b-4c\)

\(25a\left(a-\frac{32}{25}\right)\le0\Rightarrow25a^2\le32a\)

\(36b\left(b-1\right)\le0\Rightarrow36b^2\le36b\)

\(16c\left(c-1\right)\le0\Rightarrow16c^2\le16c\)

\(\Rightarrow T\le32a+36b+16c-20a-24b-4c=12\left(a+b+c\right)\le12\)

\(T_{max}=12\) khi \(\left\{{}\begin{matrix}a=0\\b=0\\c=1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}a=0\\b=1\\c=0\end{matrix}\right.\)

31 tháng 7 2019

Xét \(5P-\left(12x+10y+15z\right)=5x^2-32x+5y^2-30y+5z^2-20z.\)

                                                              \(=5x\left(x-6,4\right)+5y\left(y-6\right)+5z\left(z-4\right).\)(1)

Mà \(x,y,z\ge0\)nên từ \(12x+10y+15z\le60\)suy ra \(\hept{\begin{cases}12x\le60\\10y\le60\\15z\le60\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\y\le6\\z\le4\end{cases}\Rightarrow}}\hept{\begin{cases}x-6,4< 0\\y-6\le0\\z-4\le0\end{cases}\Rightarrow\hept{\begin{cases}x\left(x-6,4\right)\le0\\y\left(y-6\right)\le0\\z\left(z-4\right)\le0\end{cases}.}}\)(2)

Từ (1) và (2) suy ra \(5P-\left(12x+10y+15z\right)\le0\)

\(\Rightarrow P\le\frac{12x+10y+15z}{5}\le\frac{60}{5}=12.\)

Vậy GTLN của P=12, Dấu '=' xảy ra khi \(\hept{\begin{cases}x\left(x-6,4\right)=y\left(y-6\right)=z\left(z-4\right)=0\\12x+10y+15z=60\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y=0;z=4\\x=z=0;y=6\end{cases}.}}\)

NV
30 tháng 12 2021

\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)

\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)

Tương tự và cộng lại:

\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)

\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)

30 tháng 12 2021

\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)

\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)

\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)

\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)

\(=\sqrt{189}\)

Dấu "=" xảy ra <=> x = y = z = 4

24 tháng 10 2016

Ta có \(\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)

\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\)

\(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)

\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\le\sqrt{2}\left(x+y+z+3\right)\le6\sqrt{2}\)

Ta lại có \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}\le3\)

Theo đề bài ta có

\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

\(\le6\sqrt{2}+\left(3-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le3\sqrt{2}+9\)

Dấu = xảy ra khi x = y = z = 1

31 tháng 7 2023

- Với \(0< x;y< 1\)

\(x^2>x^{2003}\left(1\right)\)

\(y^2>y^{2003}\left(2\right)\)

\(z^2>z^{2003}\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow M=x^2+y^2+z^2>x^{2003}+y^{2003}+z^{2003}=3\)

\(\Rightarrow\) Không có giá trị max của M.

- Với \(x;y\ge1\)

\(x^2\le x^{2003}\left(1\right)\)

\(y^2\le y^{2003}\left(2\right)\)

\(z^2\le z^{2003}\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow x^2+y^2+z^2\le x^{2003}+y^{2003}+z^{2003}=3\)

\(\Rightarrow Max\left(M\right)=3\left(x=y=z=1\right)\)