Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng công thức: \(cos\alpha=sin\left(90^0-\alpha\right)\)
Có: `y=a sinx +b cosx`
`=> -\sqrt(a^2+b^2) <= y <= \sqrt(a^2+b^2)`
- Nhớ sương sương vậy thôi chứ câu từ đầy đủ thế nào thì bạn tự tra mạng nkaaaa.
18.
\(=lim\frac{\sqrt{1+\frac{2}{n}}}{1-\sqrt{3+\frac{1}{n^2}}}=\frac{1}{1-\sqrt{3}}\)
19.
\(=lim\frac{n\left(\sqrt{1+\frac{1}{n^2}}-\sqrt[3]{3+\frac{2}{n^3}}\right)}{n\sqrt[4]{2+\frac{2}{n^4}}}=lim\frac{\sqrt{1+\frac{1}{n^2}}-\sqrt[3]{3+\frac{2}{n^3}}}{\sqrt[4]{2+\frac{2}{n^4}}}=\frac{1-\sqrt[3]{3}}{\sqrt[4]{2}}\)
24.
\(=lim\frac{n\left(\sqrt[4]{1-\frac{2}{n^3}+\frac{1}{n^4}}+2\right)}{n\left(\sqrt[3]{3+\frac{1}{n^2}}-1\right)}=lim\frac{\sqrt[4]{1-\frac{2}{n^3}+\frac{1}{n^4}}+2}{\sqrt[3]{3+\frac{1}{n^2}}-1}=\frac{1+2}{\sqrt[3]{3}-1}=\frac{3}{\sqrt[3]{3}-1}\)
Dùng CT: \(sin\left(a+b\right)=sina.cosb+cosa.sinb\)
\(y=\sqrt{3}sin2x-cos2x\)
\(=2\left(\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x\right)\)
\(=2\left(cos\dfrac{\pi}{6}.sin2x-sin\dfrac{\pi}{6}.cos2x\right)\)
\(=2sin\left(2x-\dfrac{\pi}{6}\right)\)