K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài 9:

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)

Do đó: ΔAHB~ΔBCD

b: ta có: ΔABD vuông tại A

=>\(AB^2+AD^2=BD^2\)

=>\(BD^2=9^2+12^2=225=15^2\)

=>BD=15(cm)

Ta có: ΔAHB~ΔBCD

=>\(\dfrac{AH}{BC}=\dfrac{AB}{BD}\)

=>\(\dfrac{AH}{9}=\dfrac{12}{15}\)

=>\(AH=9\cdot\dfrac{12}{15}=9\cdot\dfrac{4}{5}=7,2\left(cm\right)\)

Bài 10:

a: Xét ΔOEA vuông tại E và ΔODB vuông tại D có

\(\widehat{EOA}=\widehat{DOB}\)(hai góc đối đỉnh)

Do đó: ΔOEA~ΔODB

=>\(\dfrac{OE}{OD}=\dfrac{OA}{OB}\)

=>\(OE\cdot OB=OA\cdot OD\)

b: Xét ΔCEB vuông tại E và ΔCDA vuông tại D có

\(\widehat{ECB}\) chung

Do đó: ΔCEB~ΔCDA

=>\(\dfrac{CE}{CD}=\dfrac{CB}{CA}\)

=>\(\dfrac{CE}{CB}=\dfrac{CD}{CA}\)

Xét ΔCED và ΔCBA có

\(\dfrac{CE}{CB}=\dfrac{CD}{CA}\)

\(\widehat{ECD}\) chung

Do đó: ΔCED~ΔCBA

Bài 2: 

a: =>168x+20=6x-21

=>162x=-41

hay x=-41/162

b: \(\Leftrightarrow2\left(3x-8\right)=3\left(5-x\right)\)

=>6x-16=15-3x

=>9x=31

hay x=31/9

c: \(\Leftrightarrow4\left(x^2+8x-20\right)-\left(x+4\right)\left(x+10\right)=3\left(x^2+2x-8\right)\)

\(\Leftrightarrow4x^2+32x-80-x^2-14x-40-3x^2-6x+24=0\)

=>12x-96=0

hay x=8

15 tháng 1 2022

Mình cảm ơn.

Bài 5: 

Xét ΔBAC có 

FG//AC

nên \(\dfrac{FG}{AC}=\dfrac{BG}{BC}=\dfrac{1}{2}\)

hay AC=16(m)

22 tháng 9 2023

a, \(\dfrac{2^3-x^3}{x\left(x^2+2x+4\right)}\) = \(\dfrac{\left(2-x\right)\left(x^2+2x+4\right)}{x\left(x^2+2x+4\right)}\) = \(\dfrac{2-x}{x}\)=\(\dfrac{x-2}{-x}\)(đpcm)

22 tháng 9 2023

b, \(\dfrac{-3x\left(x-y\right)}{y^2-x^2}\) (\(x\) \(\ne\) \(\pm\) y)

\(\dfrac{-3x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)

\(\dfrac{3x\left(y-x\right)}{\left(y-x\right)\left(y+x\right)}\)

\(\dfrac{3x}{x+y}\) (đpcm)

a) Xét ΔAEN có 

D là trung điểm của AE

DM//EN

Do đó: M là trung điểm của AN

b) Hình thang DMCB có 

E là trung điểm của DB

EN//DM//CB

Do đó: N là trung điểm của MC

Suy ra: MN=NC

mà MN=AM

nên AM=MN=NC

c) Xét hình thang DMCB có 

E là trung điểm của DB

N là trung điểm của MC

Do đó: EN là đường trung bình của hình thang DMCB

Suy ra: \(EN=\dfrac{DM+CB}{2}\)

hay \(2EN=DM+BC\)

6 tháng 8 2021

a/ Xét △AEN có:

\(DM\text{//}EN\left(gt\right)\)

- D là trung điểm của AE \(\left(AD=AE\right)\)

=> DM là đường trung bình của △AEN. Vậy: M là trung điểm của AN (đpcm)

b/ Tứ giác BDMC có \(EN\text{ // }BC\left(gt\right)\) => Tứ giác BDMC là hình thang

 Hình thang BDMC có:

\(EN\text{ // }BC\left(gt\right)\)

- E là trung điểm của DB \(\left(DE=EB\right)\)

=> EN là đường trung bình của hình thang BDMC => N là trung điểm của MC hay \(MN=NC\)

- Mà \(AM=MN\left(cmt\right)\)

Vậy: \(AM=MN=NC\left(đpcm\right)\)

c/ - Ta có: EN là đường trung bình của hình thang BDMC (cmt)

=> \(EN=\dfrac{DM+BC}{2}\)

Vậy: \(2EN=2\cdot\dfrac{DN+BC}{2}=DN+BC\left(đpcm\right)\)

10 tháng 12 2023

a: Xét tứ giác ABQN có

\(\widehat{BQN}=\widehat{QNA}=\widehat{NAB}=90^0\)

=>ABQN là hình chữ nhật

b: Xét ΔCAD có

DN,CH là các đường cao

DN cắt CH tại M

Do đó: M là trực tâm của ΔCAD

=>AM\(\perp\)CD

c: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)

Do đó: ΔHAB đồng dạng với ΔHCA

=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

=>\(HA=\sqrt{HB\cdot HC}\)

 

10 tháng 12 2023

loading...  

loading...  loading...  

17 tháng 10 2016

A= 2006 X 2008 - 20072

A = 2006 . 2008 - 2007 . 2007

A = 2006 . ( 2007 + 1 ) - 2007 . ( 2006 + 1 )

A = 2006 . 2007 + 2006 - 2007 . 2006 + 2007

A = -1

B= 2016 X 2018 - 20172

B= 2016 . 2018 - 2017 . 2017

B = 2016 . ( 2017 + 1 ) - 2017 . ( 2016 + 1 )

B = 2016 . 2017 + 2016 - 2017 . 2016 + 2017

B = -1

17 tháng 10 2016

cảm ơn bạn nhé....

22 tháng 12 2021

a: Thay x=-4 vào B, ta được:

\(B=\dfrac{1-2\cdot\left(-4\right)}{2-\left(-4\right)}=\dfrac{1+8}{2+4}=\dfrac{9}{6}=\dfrac{3}{2}\)

22 tháng 12 2021

làm giúp mình câu b vs c đc ko ạ!

 

31 tháng 7 2023

\(AB^2=AH^2+BH^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\left(Pitago\right)\)

\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\left(2\right)\left(Pitago\right)\)

\(\left(1\right),\left(2\right)\Rightarrow AC^2-CH^2=AB^2-BH^2\)

\(\Rightarrow AB^2+CH^2=AC^2+BH^2\)

\(\Rightarrow dpcm\)

31 tháng 7 2023

 Ta có \(AB^2-AC^2=\left(BH^2+AH^2\right)-\left(CH^2+AH^2\right)\) \(=BH^2-CH^2\) \(\Rightarrow AB^2+CH^2=AC^2+BH^2\), đpcm.

 (Bài này kết quả vẫn đúng nếu không có điều kiện tam giác ABC vuông tại A.)