Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Vận tốc cano khi dòng nước lặng là: $25-2=23$ (km/h)
Bài 2:
Đổi 1 giờ 48 phút = 1,8 giờ
Độ dài quãng đường AB: $1,8\times 25=45$ (km)
Vận tốc ngược dòng là: $25-2,5-2,5=20$ (km/h)
Cano ngược dòng từ B về A hết:
$45:20=2,25$ giờ = 2 giờ 15 phút.
Bài 1:
a.
$a^3-a^2c+a^2b-abc=a^2(a-c)+ab(a-c)$
$=(a-c)(a^2+ab)=(a-c)a(a+b)=a(a-c)(a+b)$
b.
$(x^2+1)^2-4x^2=(x^2+1)^2-(2x)^2=(x^2+1-2x)(x^2+1+2x)$
$=(x-1)^2(x+1)^2$
c.
$x^2-10x-9y^2+25=(x^2-10x+25)-9y^2$
$=(x-5)^2-(3y)^2=(x-5-3y)(x-5+3y)$
d.
$4x^2-36x+56=4(x^2-9x+14)=4(x^2-2x-7x+14)$
$=4[x(x-2)-7(x-2)]=4(x-2)(x-7)$
Bài 2:
a. $(3x+4)^2-(3x-1)(3x+1)=49$
$\Leftrightarrow (3x+4)^2-[(3x)^2-1]=49$
$\Leftrightarrow (3x+4)^2-(3x)^2=48$
$\Leftrightarrow (3x+4-3x)(3x+4+3x)=48$
$\Leftrightarrow 4(6x+4)=48$
$\Leftrightarrow 6x+4=12$
$\Leftrightarrow 6x=8$
$\Leftrightarrow x=\frac{4}{3}$
b. $x^2-4x+4=9(x-2)$
$\Leftrightarrow (x-2)^2=9(x-2)$
$\Leftrightarrow (x-2)(x-2-9)=0$
$\Leftrightarrow (x-2)(x-11)=0$
$\Leftrightarrow x-2=0$ hoặc $x-11=0$
$\Leftrightarrow x=2$ hoặc $x=11$
c.
$x^2-25=3x-15$
$\Leftrightarrow (x-5)(x+5)=3(x-5)$
$\Leftrightarrow (x-5)(x+5-3)=0$
$\Leftrightarrow (x-5)(x+2)=0$
$\Leftrightarrow x-5=0$ hoặc $x+2=0$
$\Leftrightarrow x=5$ hoặc $x=-2$
ta có : CK vuông góc DB (1)
AH vuông góc DB (2)
từ (1),(2) suy ra AH//CK (*)
xét tam giác vuông AHD và tam giác vuông CBK:ta có
góc H=góc K=90
góc ADH=góc CBK(slt)
suy ra 2 tam giác đó bằng nhau
suy ra AH=CK (*')
từ (*),(*') ta có tứ giác AHCK là hình bình hình
Trả lời:
Bài 1:
a, \(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(4x^2-9\right)\)
\(=8x^3+36x^2+54x+27+8x^3-36x^2+54x-27-8x^2+18\)
\(=16x^3-8x^2+108x+18\)
b, \(\left(x+2\right)^3+\left(x-2\right)^3+x^3-3x\left(x+2\right)\left(x-2\right)\)
\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8+x^3-3x\left(x^2-4\right)\)
\(=3x^3+24x-3x^3+12x=36x\)
Bài 2:
a, \(A=\left(3x+2\right)^2+\left(2x-7\right)^2-2\left(3x+2\right)\left(2x-7\right)\)
\(=\left(3x+2-2x+7\right)^2=\left(x+9\right)^2\)
Thay x = - 19 vào A, ta có:
\(A=\left(-19+9\right)^2=\left(-10\right)^2=100\)
b, \(A=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+2xy+y^2-2xy\right)\)
\(=2\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]-3\left(x+y\right)^2+6xy\)
\(=2\left(x+y\right)^3-6xy-3\left(x+y\right)^2+6xy\)
\(=2\left(x+y\right)^3-3\left(x+y\right)^2\)
Thay x + y = 1 vào A, ta có:
\(A=2.1^3-3.1^2=-1\)
c, \(B=x^3+y^3+3xy\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)+3xy\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y-1\right)\)
Thay x + y = 1 vào B, ta có:
\(B=1^3-3xy.\left(1-1\right)=1-3xy.0=1-0=1\)
d, \(C=8x^3-27y^3\)
\(=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)
\(=\left(2x-3y\right)\left(4x^2-12xy+9y^2+6xy\right)\)
\(=\left(2x-3y\right)\left[\left(2x-3y\right)^2+6xy\right]\)
\(=\left(2x-3y\right)^3+6xy\left(2x-3y\right)\)
Thay xy = 4 và 2x + 3y = 5 vào C, ta có:
\(C\)\(=5^3+6.4.5=125+120=245\)
Trả lời:
Bài 3:
\(A=x^2+x-2=\left(x^2+x+\frac{1}{4}\right)-\frac{9}{4}=\left(x+\frac{1}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\forall x\)
Dấu "=" xảy ra khi \(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy GTNN của \(A=-\frac{9}{4}\Leftrightarrow x=-\frac{1}{2}\)
\(B=x^2+y^2+x-6y+2021\)
\(=x^2+y^2+x-6y+\frac{1}{4}+9+\frac{8047}{4}\)
\(=\left(x^2+x+\frac{1}{4}\right)+\left(y^2-6y+9\right)+\frac{8047}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\left(y-3\right)^2+\frac{8047}{4}\)\(\ge\frac{8047}{4}\forall x;y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}}\)
Vậy GTNN của B = \(\frac{8047}{4}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}\)
\(C=x^2+10y^2-6xy-10y+35\)
\(=x^2+9y^2+y^2-6xy-10y+25+10\)
\(=\left(x^2-6xy+9y^2\right)+\left(y^2-10y+25\right)+10\)
\(=\left(x-3y\right)^2+\left(y-5\right)^2+10\ge10\forall x;y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-3y=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=5\end{cases}}}\)
Vậy GTNN của C = 10 <=> \(\hept{\begin{cases}x=15\\y=5\end{cases}}\)
\(D=4x-x^2+5\)
\(=-\left(x^2-4x-5\right)\)
\(=-\left(x^2-4x+4-9\right)\)
\(=-\left[\left(x-2\right)^2-9\right]\)
\(=-\left(x-2\right)^2+9\le9\forall x\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của D = 9 <=> x = 2
\(E=-x^2-4y^2+2x-4y+3\)
\(=-x^2-4y^2+2x-4y-1-1+5\)
\(=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+5\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+5\le5\forall x;y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}}\)
Vậy GTLN của D = 5 <=> \(\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}\)
Bài 3:
a) Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC(ΔBAC cân tại A)
AM chung
Do đó: ΔABM=ΔACM(cạnh huyền-cạnh góc vuông)
Suy ra: BM=CM(hai cạnh tương ứng)
mà điểm M nằm giữa hai điểm B và C
nên M là trung điểm của BC