Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Sử dụng kết quả sau: Với \(n\in\mathbb{N}\Rightarrow n^5-n\vdots 30\)
Chứng minh:
Ta có: \(n^5-n=n(n^4-1)=n(n-1)(n+1)(n^2+1)\)
Xét thấy \(n-1,n\) là hai số nguyên liên tiếp nên \(n(n-1)\vdots 2\)
\(\Rightarrow n^5-n\vdots 2(1)\)
Xét thấy \(n-1,n,n+1\) là ba số nguyên liên tiếp nên
\(n(n-1)(n+1)\vdots 3\)
\(\Rightarrow n^5-n\vdots 3(2)\)
Xét modulo của 5 cho $n$ :
+) \(n=5k\Rightarrow n^5-n=(5k)^2-(5k)\vdots 5\)
+) \(n=5k+1\Rightarrow n-1=5k\vdots 5\Rightarrow n^5-n\vdots 5\)
+) \(n=5k+2\Rightarrow n^2+1=(5k+2)^2+1=5(5k^2+4k+1)\vdots 5\)
\(\Rightarrow n^5-n\vdots 5\)
+) \(n=5k+3\Rightarrow n^2+1=(5k+3)^2+1=5(5k^2+6k+2)\vdots 5\)
\(\Rightarrow n^5-n\vdots 5\)
+) \(n=5k+4\Rightarrow n+1=5k+5\vdots 5\)
\(\Rightarrow n^5-n\vdots 5\)
Tóm lại trong mọi TH thì \(n^5-n\vdots 5(3)\)
Từ (1);(2);(3) và (2,3,5) là 3 số đôi một nguyên tố cùng nhau nên:
\(n^5-n\vdots (2.3.5=30)\)
--------------------------------
Quay trở tại bài toán. Áp dụng kết quả trên:
\(M-N=(a_1^5-a_1)+(a_2^5-a_2)+...+(a_{2017}^5-a_{2017})\vdots 30\)
Mà \(N\vdots 30\Rightarrow M\vdots 30\)
Vậy ta có đpcm.
@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Văn Đạt, @Lê Thanh Nhàn, @Vũ Huy Hoàng, @Trần Thanh Phương, @@Nk>↑@,@buithianhtho, @Nguyễn Thị Ngọc Thơ
Cái đầu tiên là \(\sqrt[n]{\frac{a_1^n+a_2^n+a_3^n+...+a_n^n}{n}}\)nhé.
từ a1 tới a2012 đều có dạng an = \(\frac{\left(n+1\right)!}{n}\)
riêng a2013 = (n + 1)!
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
minh ko biet xin loi ban nha
\(a_n=\frac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(n+1-n\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+n+1}\)
\(< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(a_1+a_2+a_3+...+a_{2009}< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...-\frac{1}{\sqrt{2010}}=1-\frac{1}{\sqrt{2010}}< \frac{2008}{2010}\)
Câu 1, \(n^6+206⋮n^2+2\)
\(\Leftrightarrow\left(n^2\right)^3+8+198⋮n^2+2\)
\(\Leftrightarrow\left(n^2+2\right)\left(n^4-2n^2+4\right)+198⋮n^2+2\)
\(\Leftrightarrow198⋮n^2+2\)
Vì n là số nguyên dương \(\Rightarrow\hept{\begin{cases}n^2+2>2\\n^2+2\in N\end{cases}}\)
làm nốt nha -,- nhiều trường hợp quá -,-
Câu 2 , Xét hiệu \(n^5-n=n\left(n^4-1\right)\)
\(=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left[\left(n^2-4\right)+5\right]\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)
\(\Rightarrow n^5-n⋮5\)
Áp dụng ta có \(a_1^5-a_1⋮5\)
\(a_2^5-a_2⋮5\)
.............\
\(a_n^5-a_n⋮5\)
\(\Rightarrow\left(a_1^5+a_2^5+...+a_n^5\right)-\left(a_1+a_2+...+a_n\right)⋮5\)
Mà \(a_1+a_2+...+a_n⋮5\Rightarrow a_1^5+a_2^5+...+a_n^5⋮5\left(Đpcm\right)\)
Cảm ơn nha =))