Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Đặt S= biểu thức cần tính}\)
\(\Rightarrow3S=1.2.3+2.3.3+3.4.3+...+1999.2000.3\)
\(\Rightarrow3S=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+........+1999.2000\left(2001-1998\right)\)
\(\Rightarrow3S=1.2.3-1.2.3+2.3.4-2.3.4+......+1999.2000.2001\)
\(\Rightarrow3S=1999.2000.2001\Rightarrow S=\frac{1999.2000.2001}{3}=2666666000\)
\(a,\frac{62}{7}:x=\frac{29}{9}:\frac{3}{56}\)
\(\frac{62}{7}:x=\frac{1624}{27}\)
\(x=\frac{62}{7}:\frac{1624}{27}=\frac{837}{5684}\)
\(b,\frac{1}{5}:x=\frac{1}{5}-\frac{1}{7}\)
\(\frac{1}{5}:x=\frac{2}{35}\)
\(x=\frac{1}{5}:\frac{2}{35}=\frac{7}{2}\)
\(c,\frac{2}{3}.x-\frac{4}{7}=\frac{1}{7}\)
\(\frac{2}{3}.x=\frac{1}{7}+\frac{4}{7}=\frac{5}{7}\)
\(x=\frac{5}{7}:\frac{2}{3}=\frac{15}{14}\)
\(d,\frac{2}{7}-\frac{8}{9}.x=\frac{2}{3}\)
\(\frac{8}{9}.x=\frac{2}{7}-\frac{2}{3}=-\frac{8}{21}\)
\(x=-\frac{8}{21}:\frac{8}{9}=-\frac{3}{7}\)
\(e,\frac{4}{7}+\frac{5}{9}:x=\frac{1}{5}\)
\(\frac{5}{9}:x=\frac{1}{5}-\frac{4}{7}=-\frac{13}{35}\)
\(x=\frac{5}{9}:-\frac{13}{35}=\frac{175}{117}\)
\(i,\frac{2}{5}-\frac{2}{5}.x=\frac{2}{5}\)
\(\frac{2}{5}.\left(1-x\right)=\frac{2}{5}\)
\(1-x=\frac{2}{5}:\frac{2}{5}=1\)
\(x=1-1=0\)
\(g,\frac{2}{3}+\frac{1}{3}:x=-1\)
\(\frac{1}{3}:x=-1-\frac{2}{3}=-\frac{5}{3}\)
\(x=\frac{1}{3}:-\frac{5}{3}=-\frac{1}{5}\)
học tốt nha
a) Ta có: \(A=\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)
\(=\left(\dfrac{2}{7}+\dfrac{11}{7}+\dfrac{1}{7}\right)+\left(\dfrac{-3}{8}+\dfrac{-5}{8}\right)+\dfrac{1}{3}\)
\(=2-1+\dfrac{1}{3}\)
\(=1+\dfrac{1}{3}=\dfrac{4}{3}\)
b) Ta có: \(B=\dfrac{-3}{8}+\dfrac{12}{25}+\dfrac{5}{-8}+\dfrac{2}{-5}+\dfrac{13}{25}\)
\(=\left(\dfrac{-3}{8}+\dfrac{-5}{8}\right)+\left(\dfrac{12}{25}+\dfrac{13}{25}\right)+\dfrac{-2}{5}\)
\(=-1+1+\dfrac{-2}{5}\)
\(=-\dfrac{2}{5}\)
Giải:
A= 2/7+ -3/8 +11/7 +1/3 + 1/7 + 5/-8
A= (2/7+11/7+1/7)+(-3/8+-5/8)+1/3
A= 2+ (-1) + 1/3
A= 1+1/3
A= 4/3
B= -3/8 + 12/25 + 5/-8 + 2/-5 + 13/25
B= (-3/8+-5/8) + (12/25+13/25) + -2/5
B= -1 + 1 + -2/5
B=-2/5
Chúc bạn học tốt!
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(2A=1-\frac{1}{3^{100}}\)
\(A=\frac{1-\frac{1}{3^{100}}}{2}\)
\(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(B=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)
\(3B=\frac{5.3}{4.7}+\frac{5.3}{7.10}+\frac{5.3}{10.13}+...+\frac{5.3}{25.28}\)
\(3B=5\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\right)\)
\(3B=5\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(3B=5\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(3B=5\cdot\frac{3}{14}=\frac{15}{14}\)
\(B=\frac{15}{14}:3=\frac{5}{14}\)
a) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(2A=1-\frac{1}{3^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)
b) \(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(B=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)
\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{5}{3}.\left(\frac{1}{7}-\frac{1}{10}\right)+\frac{5}{3}.\left(\frac{1}{10}-\frac{1}{13}\right)+...+\frac{5}{3}.\left(\frac{1}{25}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}.\frac{3}{14}\)
\(\Rightarrow B=\frac{5}{14}\)
\(\frac{1}{2}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}\)\(+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}\)
\(=\frac{1}{4}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
\(=\frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\right)\)
\(=\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)
\(=\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{6}\right)\)
\(=\frac{1}{4}+\frac{1}{3}\)
\(=\frac{7}{12}\)
\(A=1-2+3-4+...+1999-2000+2001\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(1999-2000\right)+2001\)
\(=\left(-1\right)+\left(-1\right)+...+\left(-1\right)+2001\)
(Từ 1 đến 2000 có 2000 số => có 2000:2=1000 cặp)
\(=\left(-1\right).1000\)
\(=\left(-1000\right)+2001\)
\(=1001\)
(xin lỗi nhe, mik chỉ giúp bạn mỗi câu A thui. Nếu bạn ko k cũng ko sao)
Tìm các số tự nhiên n để phân số A=n+7/n-2 có giá trị là 1 số nguyên
Mọi người giúp mình nha! Cảm ơn mọi người nhé <3