K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

\(A=1-2+3-4+...+1999-2000+2001\)

\(=\left(1-2\right)+\left(3-4\right)+...+\left(1999-2000\right)+2001\)

\(=\left(-1\right)+\left(-1\right)+...+\left(-1\right)+2001\)

(Từ 1 đến 2000 có 2000 số => có 2000:2=1000 cặp)

\(=\left(-1\right).1000\)

\(=\left(-1000\right)+2001\)

\(=1001\)

(xin lỗi nhe, mik chỉ giúp bạn mỗi câu A thui. Nếu bạn ko k cũng ko sao) 

16 tháng 7 2018

Tìm các số tự nhiên n để phân số A=n+7/n-2 có giá trị là 1 số nguyên 

Mọi người giúp mình nha! Cảm ơn mọi người nhé <3

7 tháng 6 2019

\(\text{Đặt S= biểu thức cần tính}\)

\(\Rightarrow3S=1.2.3+2.3.3+3.4.3+...+1999.2000.3\)

\(\Rightarrow3S=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+........+1999.2000\left(2001-1998\right)\)

\(\Rightarrow3S=1.2.3-1.2.3+2.3.4-2.3.4+......+1999.2000.2001\)

\(\Rightarrow3S=1999.2000.2001\Rightarrow S=\frac{1999.2000.2001}{3}=2666666000\)

31 tháng 3 2018

\(a,\frac{62}{7}:x=\frac{29}{9}:\frac{3}{56}\)

\(\frac{62}{7}:x=\frac{1624}{27}\)

\(x=\frac{62}{7}:\frac{1624}{27}=\frac{837}{5684}\)

\(b,\frac{1}{5}:x=\frac{1}{5}-\frac{1}{7}\)

\(\frac{1}{5}:x=\frac{2}{35}\)

\(x=\frac{1}{5}:\frac{2}{35}=\frac{7}{2}\)

\(c,\frac{2}{3}.x-\frac{4}{7}=\frac{1}{7}\)

\(\frac{2}{3}.x=\frac{1}{7}+\frac{4}{7}=\frac{5}{7}\)

\(x=\frac{5}{7}:\frac{2}{3}=\frac{15}{14}\)

\(d,\frac{2}{7}-\frac{8}{9}.x=\frac{2}{3}\)

\(\frac{8}{9}.x=\frac{2}{7}-\frac{2}{3}=-\frac{8}{21}\)

\(x=-\frac{8}{21}:\frac{8}{9}=-\frac{3}{7}\)

\(e,\frac{4}{7}+\frac{5}{9}:x=\frac{1}{5}\)

\(\frac{5}{9}:x=\frac{1}{5}-\frac{4}{7}=-\frac{13}{35}\)

\(x=\frac{5}{9}:-\frac{13}{35}=\frac{175}{117}\)

\(i,\frac{2}{5}-\frac{2}{5}.x=\frac{2}{5}\)

\(\frac{2}{5}.\left(1-x\right)=\frac{2}{5}\)

\(1-x=\frac{2}{5}:\frac{2}{5}=1\)

\(x=1-1=0\)

\(g,\frac{2}{3}+\frac{1}{3}:x=-1\)

\(\frac{1}{3}:x=-1-\frac{2}{3}=-\frac{5}{3}\)

\(x=\frac{1}{3}:-\frac{5}{3}=-\frac{1}{5}\)

học tốt nha

a) Ta có: \(A=\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)

\(=\left(\dfrac{2}{7}+\dfrac{11}{7}+\dfrac{1}{7}\right)+\left(\dfrac{-3}{8}+\dfrac{-5}{8}\right)+\dfrac{1}{3}\)

\(=2-1+\dfrac{1}{3}\)

\(=1+\dfrac{1}{3}=\dfrac{4}{3}\)

b) Ta có: \(B=\dfrac{-3}{8}+\dfrac{12}{25}+\dfrac{5}{-8}+\dfrac{2}{-5}+\dfrac{13}{25}\)

\(=\left(\dfrac{-3}{8}+\dfrac{-5}{8}\right)+\left(\dfrac{12}{25}+\dfrac{13}{25}\right)+\dfrac{-2}{5}\)

\(=-1+1+\dfrac{-2}{5}\)

\(=-\dfrac{2}{5}\)

Giải:

A= 2/7+ -3/8 +11/7 +1/3 + 1/7 + 5/-8

A= (2/7+11/7+1/7)+(-3/8+-5/8)+1/3

A= 2+ (-1) + 1/3

A= 1+1/3

A= 4/3

 

B= -3/8 + 12/25 + 5/-8 + 2/-5 + 13/25

B= (-3/8+-5/8) + (12/25+13/25) + -2/5

B= -1 + 1 + -2/5

B=-2/5

Chúc bạn học tốt!

10 tháng 7 2017

a)n=1

b)n=9

c)n=4

d)n=8

25 tháng 4 2017

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)

\(2A=1-\frac{1}{3^{100}}\)

\(A=\frac{1-\frac{1}{3^{100}}}{2}\)

\(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)

\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)

\(B=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)

\(3B=\frac{5.3}{4.7}+\frac{5.3}{7.10}+\frac{5.3}{10.13}+...+\frac{5.3}{25.28}\)

\(3B=5\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\right)\)

\(3B=5\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(3B=5\left(\frac{1}{4}-\frac{1}{28}\right)\)

\(3B=5\cdot\frac{3}{14}=\frac{15}{14}\)

\(B=\frac{15}{14}:3=\frac{5}{14}\)

25 tháng 4 2017

a) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)

\(2A=1-\frac{1}{3^{100}}\)

\(\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)

b)  \(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)

\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)

\(B=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)

\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{5}{3}.\left(\frac{1}{7}-\frac{1}{10}\right)+\frac{5}{3}.\left(\frac{1}{10}-\frac{1}{13}\right)+...+\frac{5}{3}.\left(\frac{1}{25}-\frac{1}{28}\right)\)

\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{28}\right)\)

\(B=\frac{5}{3}.\frac{3}{14}\)

\(\Rightarrow B=\frac{5}{14}\)

10 tháng 7 2018

\(\frac{1}{2}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}\)\(+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+\frac{1}{5}.\frac{1}{6}\)

\(=\frac{1}{4}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)

\(=\frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\right)\)

\(=\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)

\(=\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{6}\right)\)

\(=\frac{1}{4}+\frac{1}{3}\)

\(=\frac{7}{12}\)

10 tháng 7 2018

HINH NHU BAN VIET NHAM DAU BAI ROI