Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x+1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)=17\)\(\Leftrightarrow x^3+3x^2+3x+1+8-x^3+3x^2+6x-17=0\)\(\Leftrightarrow6x^2+9x-8=0\)
\(\Leftrightarrow x^2+\dfrac{3}{2}x-\dfrac{4}{3}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{9}{16}-\dfrac{4}{3}=0\)
\(\Leftrightarrow\left(x+\dfrac{3}{4}\right)^2=\dfrac{91}{48}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\sqrt{\dfrac{91}{48}}\\x+\dfrac{3}{4}=-\sqrt{\dfrac{91}{48}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{91}{48}}-\dfrac{3}{4}\\x=-\sqrt{\dfrac{91}{48}}-\dfrac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-9+\sqrt{273}}{12}\\x=-\dfrac{9+\sqrt{273}}{12}\end{matrix}\right.\)
b, \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(\Leftrightarrow x^3+8-x^3+2x-15=0\)
\(\Leftrightarrow2x=7\Rightarrow x=\dfrac{7}{2}\)
a,\(\Leftrightarrow\left(x-1\right)^3+\left(2-x\right)\left(4+2x+x^2\right)+3x\left(x+2\right)-17=0\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x-17=0\)
\(\Leftrightarrow9x-10=0\)
\(\Leftrightarrow x=\frac{10}{9}\)
a) (x - 1)3 + (2 - x)(4 + 2x + x2) + 3x(x + 2) = 12
<=> x3 - 2x2 + x - x2 + 2x - 1 + 8 + 4x + 2x2 - 4x - 2x2 + 3x2 + 6x = 17
<=> 9x + 7 = 17
<=> 9x = 17 - 7
<=> 9x = 10
<=> x = \(\frac{10}{9}\)
b) (x + 2)(x2 - 2x + 4) - x(x2 - 2) = 15
<=> x3 - 2x2 + 4x + 2x2 - 4x + 8 - x3 + 2x = 15
<=> 2x + 8 = 15
<=> 2x = 15 - 8
<=> 2x = 7
<=> x = \(\frac{7}{2}\)
c) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x2 + 1)2 = 15
<=> x3 + 45x - 18 - x3 - 3x2 - 9x + 3x2 + 9x + 27 = 15
<=> 45x + 9 = 15
<=> 45x = 15 - 9
<=> 45x = 6
<=> x = \(\frac{6}{45}\)
d) x(x - 5)(x + 5) - (x + 2)(x2 - 2x + 4) = 3
<=> x3 - 25x - x3 + 2x2 - 4x - 8 = 3
<=> -25x - 8 = 3
<=> -25x = 3 + 8
<=> -25x = 11
<=> x = \(-\frac{11}{25}\)
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(x^3-2x^2+4x+2x^2-4x+8-x^3+2x=15\)
\(2x+8=15\)
\(2x=7\)
\(x=\frac{7}{2}\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)
\(\Leftrightarrow9x+7=17\)
\(\Leftrightarrow9x=10\)
\(\Leftrightarrow x=\frac{10}{9}\)
Mình ko ghi lại đề , bạn ghi ra xong rồi suy ra như mình nha .
1) \(=>A=\left(6x^2+3x-10x-5\right)-\left(6x^2+14x-9x-21\right)\)
\(=>A=-12x+16\)
2) \(=>B=8x^3+27-8x^3+2=29\)
3)\(=>C=[\left(x-1\right)-\left(x+1\right)]^3=\left(-2\right)^3=-8\)
4)\(=>D=[\left(2x+5\right)-\left(2x\right)]^3=5^3=125\)
5)\(=>E=\left(3x+1\right)^2-\left(3x+5\right)^2+12x+2\left(6x+3\right)\)
\(=>E=\left(3x+1+3x+5\right)\left(3x+1-3x-5\right)+12x+12x+6\)
\(=>E=\left(6x+6\right)\left(-4\right)+24x+6=-24x-24+24x+6=-18\)
6)\(=>F=\left(2x^2+3x-10x-15\right)-\left(2x^2-6x\right)+x+7=-8\)
k cho mik nha ,
a) 4( 18 - 5x ) - 12( 3x - 16 ) = 15( 2x - 16 ) - 6( x + 14 )
<=> 72 - 20x - 36x + 192 = 30x - 240 - 6x - 84
<=> -20x - 36x - 30x + 6x = -240 - 84 - 72 - 192
<=> -80x = -588
<=> x = -588/-80 = 147/20
b) ( x + 3 )( x + 2 ) - ( x - 2 )( x + 5 ) = 6
<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 6
<=> x2 + 5x + 6 - x2 - 3x + 10 = 6
<=> 2x + 16 = 6
<=> 2x = -10
<=> x = -5
c) -x( x + 3 ) + 2 = ( 4x + 1 )( x - 1 ) + 2x
<=> -x2 - 3x + 2 = 4x2 - 3x - 1 + 2x
<=> -x2 - 3x - 4x2 + 3x - 2x = -1 - 2
<=> -5x2 - 2x = -3
<=> -5x2 - 2x + 3 = 0
<=> -( 5x2 + 2x - 3 ) = 0
<=> -( 5x2 + 5x - 3x - 3 ) = 0
<=> -[ 5x( x + 1 ) - 3( x + 1 ) ] = 0
<=> -( x + 1 )( 5x - 3 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{3}{5}\end{cases}}\)
d) ( 2x + 3 )( x - 3 ) - ( x - 3 )( x + 1 ) = ( 2 - x )( 3x + 1 ) + 3
<=> 2x2 - 3x - 9 - ( x2 - 2x - 3 ) = -3x2 + 5x + 2 + 3
<=> 2x2 - 3x - 9 - x2 + 2x + 3 = -3x2 + 5x + 2 + 3
<=> 2x2 - 3x - x2 + 2x + 3x2 - 5x = 2 + 3 + 9 - 3
<=> 4x2 - 6x = 11
<=> 4x2 - 6x - 11 = 0
=> Vô nghiệm ( Lớp 8 chưa học nghiệm vô tỉ nên để vậy ) :))
vẫn làm được nha quỳnh !
\(4x^2-6x-11=0\)
\(< =>\left(4x^2-6x+\frac{9}{4}\right)-13\frac{1}{4}=0\)
\(< =>\left(2x-\frac{3}{2}\right)^2=\frac{53}{4}\)
\(< =>\orbr{\begin{cases}2x-\frac{3}{2}=\frac{\sqrt{53}}{2}\\2x-\frac{3}{2}=-\frac{\sqrt{53}}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}2x=\frac{3+\sqrt{53}}{2}\\2x=\frac{3-\sqrt{53}}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=\frac{3+\sqrt{53}}{4}\\x=\frac{3-\sqrt{53}}{4}\end{cases}}\)
a) (x - 1)3 + (2 - x)(4 + 2x + x2) + 3x(x + 2) = 16
x3 - 3x2 + 3x - 1 + 8 - x3 + 3x2 + 6x - 16 = 0
9x - 9 = 0
9x = 9
x = 1
Vậy x ∈ {1}
b) ( x + 2)(x2 - 2x + 4) - x(x2 - 2) = 16
x3 + 8 - x3 + 2x - 16 = 0
2x - 8 = 0
2x = 8
x = 4
Vậy x ∈ {4}
c) x(x - 5)(x + 5) - (x + 2)(x2 - 2x + 4) = 17
x3 - 25x - x3 - 8 - 17 = 0
-25x - 25 = 0
-25x = 25
x = -1
Vậy x ∈ {1}
d) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 15
x3 - 9x2 + 27x - 27 - x3 + 27 + 9x2 + 18x + 9 - 15 = 0
45x - 6 = 0
45x = 6
x = \(\frac{2}{15}\)
Vậy x ∈ {\(\frac{2}{15}\)}
Ít thôi -..-
a) ( 3x + 2 )( 2x + 9 ) - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )
<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )
<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4
<=> 12x + 15 = 2x + 5
<=> 12x - 2x = 5 - 15
<=> 10x = -10
<=> x = -1
b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )
<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20
<=> 3x2 - 12x - 2 = 3x2 - 17x + 20
<=> 3x2 - 12x - 3x2 + 17x = 20 + 2
<=> 5x = 22
<=> x = 22/5
c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8
<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8
<=> x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
<=> 12x + 16 = -8
<=> 12x = -24
<=> x = -2
d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16
<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16
<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16
<=> 8x2 - 9x - 4 = 16
<=> 8x2 - 9x - 4 - 16 = 0
<=> 8x2 - 9x - 20 = 0
( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm
2 là nghiệm vô tỉ =) )
a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)
=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)
=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4
=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)
=> 12x + 15 = 2x + 5
=> 12x + 15 - 2x - 5 = 0
=> 10x + 10 = 0
=> 10x = -10 => x = -1
b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)
=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)
=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20
=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20
=> 3x2 - 12x - 2 = 3x2 - 17x + 20
=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0
=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0
=> 5x - 22 = 0
=> 5x = 22 => x = 22/5
c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8
=> x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 + 12x = -8
=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8
=> 12x + 16 = -8
=> 12x = -24
=> x = -2
Còn bài cuối làm nốt
a.\(\Leftrightarrow\left(x-1\right)^3+8-x^3+3x\left(x+2\right)=17\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)
\(\Leftrightarrow9x+7=17\)
\(\Leftrightarrow9x=10\Leftrightarrow x=\frac{10}{9}\)