K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 giờ trước (11:36)

\(\left(2x-3\right)^2-\left(x-1\right)^2=0\)

=>(2x-3-x+1)(2x-3+x-1)=0

=>(x-2)(3x-4)=0

=>\(\left[\begin{array}{l}x-2=0\\ 3x-4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\\ 3x=4\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\\ x=\frac43\end{array}\right.\)

27 tháng 3 2020

= -1

giải thì tự xử lí viết ra dài  nản

9 tháng 12 2015

Kệ cái thằng ấy, nó có trả lời đc câu nào tử tế đâu. Câu **** ý mà, kệ nó đi

9 giờ trước (10:52)

???


30 tháng 7 2016

\(4x^8+1=\)\(4x^8-4x^4+4x^4+1\)\(=\left(4x^8+4x^4+1\right)-4x^4\)

                \(=\left(2x^4+1\right)^2-\left(2x^2\right)^2\)\(=\left(2x^4-2x^2+1\right)\left(2x^4-2x^2-1\right)\)

phần b em tự giải nhé

31 tháng 7 2016

giải câu b hộ tớ đk k ạ ??

13 tháng 7 2016

a) 6x^2-11x+3                              b)2x^2+3x-27                      c)3x^2-8x+4

= 6x^2-2x-9x+3                            =2x^2-6x+9x-27                    =3x^2-6x-2x+4

=2x(3x-1)-3(3x-1)                         =2x(x-3)+9(x-3)                      =3x(x-2)-2(x-2)

=(2x-3)(3x-1)                               =(2x+9)(x-3)                           =(3x-2)(x-2)      

NV
30 tháng 12 2021

Tam giác ABC vuông tại A có AM là trung tuyến ứng với cạnh huyền

\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow BC=2AM=50\left(m\right)\)

a. Áp dụng định lý Pitago:

\(AB=\sqrt{BC^2-AC^2}=30\left(m\right)\)

b. Kẻ \(MH\perp AC\Rightarrow MH||AB\) (cùng vuông góc AC)

Mà M là trung điểm BC \(\Rightarrow MH\) là đường trung bình tam giác ABC

\(\Rightarrow MH=\dfrac{1}{2}AB=15\left(m\right)\)

\(\Rightarrow S_{AMC}=\dfrac{1}{2}MH.AC=\dfrac{1}{2}.15.40=300\left(m^2\right)\)

30 tháng 12 2021

Cảm ơn nhiều ạ ;-;

2 tháng 12 2017

x2-3.(x-1)

(x-1)2

=>x2-3

x-1

8 tháng 8 2019

1) \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)\(\Leftrightarrow\)\(2x^2+2y^2\ge x^2+2xy+y^2\)\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)

2) \(\frac{1}{xy}=\frac{1}{\left(\sqrt{xy}\right)^2}\ge\frac{1}{\left(\frac{x+y}{2}\right)^2}=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)

9 tháng 8 2019

bạn Diệu Linh ơi, bài này bảo chứng minh điều đó là đúng chứ không bảo điều đó là giả thiết nhé bạn, nhưng cũng cảm ơn bạn vì đã giúp mình =))