Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔAHD có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAHD cân tại A
mà AB là đường cao
nên AB là tia phân giác của góc HAD(1)
Xét ΔAHE có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAE(2)
Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{CAH}+\widehat{BAH}\right)=2\cdot90^0=180^0\)
=>D,A,E thẳng hàng
c: Xét ΔHED có
M là trung điểm của HE
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//ED
e: Ta có: AH=AD
mà AH=AE
nên AD=AE
hay A là trung điểm của ED
Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó: ΔDHE vuông tại H
bn ấn print screen sYS RQ
RỒI VÀO TRANG VẼ CTRL+ v rồi bn lưu...
Câu 4:
a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
b: \(A=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x^2-25\right)}{2x\left(x+5\right)}+\dfrac{50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\dfrac{x-1}{2}\)
c: Để A=-3 thì x-1=-6
hay x=-5(loại)
a/ 12x^2+4x/9x^2-1
=4x(3x+1)/(3x)^2-1
=4x(3x+1)/(3x-1)(3x+1)
bạn rút gọn 3x+1 vs 3x-1 vậy kết quả là 4x/3x
Xét hình thang cân ABCD có:
MA=MB (M là trung điểm AB:gt)
=>MA đối xứng với MB qua MN
AD=BC (do ABCD là htc)
=>AD đối xứng với BC qua MN
ND=NC (N là trung điểm của AC:gt)
=>ND đối xứng với NC qua MN
Do đó tứ giác MADN đối xứng với tứ giác MBCN qua MN
Vậy htc ABCD có một trục đối xứng là MN
A B C I D
B. xét tgiac ADB và tgiac ACI có:
góc BAD= góc IAC(gt)
góc BDA= góc ACI(gt)
vậy tgiac ADB đồng dạng với tgiac ACI(g.g) => Góc ABD= góc CID
ta có tỉ số sau:\(\frac{AD}{AC}\)=\(\frac{AB}{AI}\)=> AB.AC=AD.AI(1)
Xét tgiacADB và tgiac CID có:
góc ADB= góc CDI(đôi đỉnh)
góc ABD= góc CID(cmt)
vậy tgiac ADB đồng dạng với tgiac CID(g.g)
Nên ta có tỉ số sau:\(\frac{BD}{DI}\)=\(\frac{AD}{CD}\)=>BD.CD=AD.DI(2)
Từ (1) và(2) ta có:
AB.AC-BD.CD=AD.AI-AD.DI=AD.(AI-DI)=AD.AD=\(AD^2\)
Vậy\(AD^2\)=AB.AC-BD.CD
ABCID
B. xét tam giác ADB và tgiac ACI có:
góc BAD= góc IAC (gt)
góc BDA= góc ACI (gt)
vậy tam giác ADB đồng dạng với tgiac ACI(g.g) => Góc ABD= góc CID
ta có tỉ số sau:AD/AC=AB/AI=> AB.AC=AD.AI(1)
Xét tam giácADB và tgiac CID có:
góc ADB= góc CDI (đôi đỉnh)
góc ABD= góc CID (cmt)
vậy tgiac ADB đồng dạng với tam giác CID(g.g)
Nên ta có tỉ số sau:BD/DI=AD/CD=>BD.CD=AD.DI(2)
Từ (1) và(2) ta có:
AB.AC-BD.CD=AD.AI-AD.DI=AD.(AI-DI)=AD.AD=AD2
VậyAD2=AB.AC-BD.CD