Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\pi< \alpha< \dfrac{3\pi}{2}\) \(\Rightarrow\dfrac{\pi}{2}< \dfrac{\alpha}{2}< \dfrac{3\pi}{4}\)
\(\Rightarrow sin\dfrac{\alpha}{2}>0;cos\dfrac{\alpha}{2}< 0\)
\(\pi< \alpha< \dfrac{3\pi}{2}\Rightarrow cos\alpha< 0\)
\(\Rightarrow cos\alpha=-\sqrt{1-sin^2\alpha}=-\dfrac{3}{5}\)
Có \(sin^2\dfrac{\alpha}{2}=\dfrac{1-cosa}{2}=\dfrac{4}{5}\Rightarrow sin\dfrac{\alpha}{2}=\sqrt{\dfrac{4}{5}}=\dfrac{2\sqrt{5}}{5}\)
\(cos^2\dfrac{\alpha}{2}=\dfrac{1+cosa}{2}=\dfrac{1}{5}\Rightarrow cos\dfrac{\alpha}{2}=-\sqrt{\dfrac{1}{5}}=-\dfrac{\sqrt{5}}{5}\)
\(tan\dfrac{\alpha}{2}=\dfrac{sin\dfrac{\alpha}{2}}{cos\dfrac{\alpha}{2}}=-2\)
\(cot\dfrac{\alpha}{2}=-\dfrac{1}{2}\)
$\sin18=\cos72=2 \cos^{2}36-1=2(1- \sin^{2}18)^{2}-1
\Leftrightarrow 8 \sin^{4}18 -8 \sin^{2}18- \sin18+1=0
\Leftrightarrow ( \sin18-1)[8 \sin^{3}18+8 \sin^{2}18-1]=0 $
ht
ĐKXĐ: \(x>3\)
\(\Leftrightarrow2x+2\sqrt{x-3}\sqrt{x+3}=\dfrac{4\left(x+3\right)}{\left(x-3\right)^2}\)
\(\Leftrightarrow\left(\sqrt{x+3}+\sqrt{x-3}\right)^2=\dfrac{4\left(x+3\right)}{\left(x-3\right)^2}\)
\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-3}=\dfrac{2\sqrt{x+3}}{x-3}\)
\(\Leftrightarrow\dfrac{3}{\sqrt{x+3}-\sqrt{x-3}}=\dfrac{\sqrt{x+3}}{x-3}\)
\(\Leftrightarrow3x-9=x+3-\sqrt{x^2-9}\)
\(\Leftrightarrow\sqrt{x^2-9}=12-2x\) (\(x\le6\))
\(\Leftrightarrow x^2-9=144-48x+4x^2\)
\(\Leftrightarrow3x^2-48x+153=0\)
\(\Leftrightarrow x=8-\sqrt{13}\)
Câu 1: ĐKXĐ: $x-1\neq 0$
$\Leftrightarrow x\neq 1$
Vậy TXĐ là $\mathbb{R}\setminus \left\{1\right\}$
Đáp án D.
Câu 2:
ĐKXĐ: $x^2-1\neq 0$
$\Leftrightarrow (x-1)(x+1)\neq 0$
$\Leftrightarrow x\neq \pm 1$
Vậy TXĐ là $\mathbb{R}\setminus \left\{\pm 1\right\}$
Đáp án D.
Câu 3:
ĐKXĐ: \(\left\{\begin{matrix} 6-x\geq 0\\ x^2-49\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 6\\ (x-7)(x+7)\neq 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\leq 6\\ x\neq \pm 7\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 6\\ x\ne -7\end{matrix}\right.\)
Vậy TXĐ là $(-\infty; 6]\setminus \left\{-7\right\}$
Đáp án C