Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2x+1=x^2+2\cdot1x+1^2=\left(x+1\right)^2\)
\(4x^2+12x+9=\left(2x\right)^2+2\cdot3\cdot2x+3^2=\left(2x+3\right)^2\)
\(\dfrac{4}{9}a^2-\dfrac{4}{3}a+1=\left(\dfrac{2}{3}a\right)^2-2\cdot\dfrac{2}{3}\cdot1a+1^2=\left(\dfrac{2}{3}a-1\right)^2\)
\(a^2+5a+\dfrac{25}{4}=a^2+2\cdot2,5a+2,5^2=\left(2,5+a\right)^2\)
Bài 13:
a: Ta có: \(AE=EB=\dfrac{AB}{2}\)
\(AD=DC=\dfrac{AC}{2}\)
mà AB=AC
nên AE=EB=AD=DC
Xét ΔAED có AE=AD
nên ΔADE cân tại A
b: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{BAD}\) chung
AD=AE
Do đó: ΔABD=ΔACE
c: Xét ΔABC có
\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\left(=1\right)\)
Do đó: DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà BD=CE
nên BEDC là hình thang cân
Bài 4:
a) Ta có: AM+MB=AB
AN+NC=AC
mà MB=NC
và AB=AC
nên AM=AN
Xét ΔABC có
\(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)
nên MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
b) Ta có: ΔABC cân tại A
nên \(\widehat{B}=\widehat{C}=\dfrac{180^0-\widehat{A}}{2}=\dfrac{180^0-40^0}{2}=70^0\)
\(\Leftrightarrow\widehat{BMN}=\widehat{CNM}=180^0-70^0=110^0\)
Bài 3:
Ta có: ABCD là hình thang cân
nên AD=BC
mà AD=AB
nên BC=AB
Xét ΔBAC có BA=BC(cmt)
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)(hai góc ở đáy)
mà \(\widehat{BAC}=\widehat{ACD}\)(hai góc so le trong, AB//CD
nên \(\widehat{BCA}=\widehat{DCA}\)
hay CA là tia phân giác của \(\widehat{BCD}\)
a: \(=\dfrac{x+2}{x+2}=1\)
b: \(=\dfrac{2x+6}{x+3}=2\)
Bài 5:
1) Ta có: \(2x\left(x+1\right)-2x^2-2x\)
\(=2x^2+2x-2x^2-2x\)
=0
2) Ta có: \(3x\left(x-2\right)-3\left(x^2-2x\right)+4\)
\(=3x^2-6x-3x^2+6x+4\)
=4
3) Ta có: \(\left(x-1\right)\left(x-5\right)-x^2+6x-5\)
\(=x^2-6x+5-x^2+6x-5\)
=0
4) Ta có: \(\left(2x+1\right)\left(x-1\right)-2x^2+x-5\)
\(=2x^2-2x+x-1-2x^2+x-5\)
=-6
5) Ta có: \(\left(3x-2\right)\left(x-1\right)-3x^2+5x-4\)
\(=3x^2-3x-2x+2-3x^2+5x-4\)
=-2
6) Ta có: \(2x\left(x+1\right)-x\left(x+3\right)-x^2+x+5\)
\(=2x^2+2x-x^2-3x-x^2+x+5\)
=5
a) x^2 - x = 0
x(x-1)=0
x=0 hoặc x=1
b) (x-2)^2 - 3(x-2)=0
(x-2)(x-5)=0
x=2 hoặc x=5
c) pt <=> 3(x - 1) - 2(x - 1)=0
<=> x-1=0
<=> x = 1
a) \(\Rightarrow x\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b) \(\Rightarrow\left(x-2\right)\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
c) \(\Rightarrow3\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
d) \(\Rightarrow\left(x-5\right)\left(x+5\right)+\left(x-5\right)^2=0\)
\(\Rightarrow\left(x-5\right).2x=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
e) \(\Rightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
1: \(\Leftrightarrow x-2-7x+7=-1\)
=>-6x+5=-1
hay x=1(loại)
3: \(\Leftrightarrow\left(x+2\right)\left(x-1\right)-\left(x+1\right)\left(x+3\right)=4\)
\(\Leftrightarrow x^2+x-2-x^2-4x-3=4\)
=>-3x=9
hay x=-3(loại)
4: \(\Leftrightarrow x^2+2x+1-x^2+2x-1=3x\cdot\dfrac{x+1-x+1}{x+1}\)
\(\Leftrightarrow4x=\dfrac{6x}{x+1}\)
\(\Leftrightarrow4x^2+4x-6x=0\)
\(\Leftrightarrow4x^2-2x=0\)
=>2x(2x-1)=0
hay \(x\in\left\{0;\dfrac{1}{2}\right\}\)
Bài 1:
a) (2x+5)(x-6)=2x2+5x-12x-30=2x2-7x-30
b) (2x-1)(x2-4x+3)=2x3-8x2+6x-x2+4x-3=2x3-9x2+10x-3
c) x2-2x-(x-7)(x+2)=x2-2x-x2+7x-2x+14=3x+14
d) 3x-(x+2)(x+4)=3x-x2-2x-4x-8=-x2-3x-8
Bài 2:
a) 2(x+1)=x-1
⇒2x+2=x-1
⇒2x+2-x+1=0
⇒x+3=0
⇒x=-3
b) x(x+2)-x2=1
⇒x2+2x-x2=1
⇒2x=1
⇒x=0,5
c) 3x(x-2)=(3x-1)(x-1)-5
⇒3x2-6x=3x2-x-3x+1-5
⇒3x2-6x-3x2+x+3x-1+5=0
⇒-2x+4=0
⇒-2x=-4
⇒x=2
d) 6(x-1)(x-2)-6x(x+3)=2x
⇒6(x2-x-2x+2)-6x2-18x-2x=0
⇒6x2-6x-12x+12-6x2-18x-2x=0
⇒-38x+12=0
⇒-38x=-12
⇒x=\(\dfrac{6}{19}\)