Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge-7\)
PT \(\Leftrightarrow\left(\sqrt[3]{x-8}-\left(x-8\right)\right)+\left[\sqrt{x+7}-4\right]+\left(x-9\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\frac{-\left(x-9\right)\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}+\frac{x-9}{\sqrt{x+7}+4}+\left(x-9\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left[x^2+x+2+\frac{1}{\sqrt{x+7}+4}-\frac{\left(x-7\right)\left(x-8\right)}{\left(\sqrt[3]{x-8}\right)^2+\left(x-8\right)\sqrt[3]{x-8}+\left(x-8\right)^2}\right]=0\)
\(\Leftrightarrow x=9\)
P/s:em chả biết đánh giá cái ngoặc to thế nào nữa:((((
a) đk: \(x\ge0;x\ne1\)
b) \(A=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right)\div\frac{\sqrt{x}-1}{2}\)
\(A=\frac{x+2+\left(\sqrt{x}-1\right)\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\div\frac{\sqrt{x}-1}{2}\)
\(A=\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{2}{\sqrt{x}-1}\)
\(A=\frac{2\left(x-2\sqrt{x}+1\right)}{\left(x-2\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}\)
\(A=\frac{2}{x+\sqrt{x}+1}\)
c) Ta có: \(x+\sqrt{x}+1=\left(x+\sqrt{x}+\frac{1}{4}\right)+\frac{3}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
=> \(\frac{2}{x+\sqrt{x}+1}>0\left(\forall x\ne1\right)\)
d) Ta chỉ có thể tìm GTLN thôi
Để A đạt GTLN => \(x+\sqrt{x}+1\) phải đạt GTNN
Dấu "=" xảy ra khi: \(x=0\)
Vậy Max(A) = 2 khi x = 0
1/ \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\)
\(\Leftrightarrow\frac{a+b+c}{abc}=0\)(đúng)
Vậy ta có ĐPCM
2/ \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2005}+\sqrt{2006}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2006}-\sqrt{2005}\)
\(=\sqrt{2006}-1\)
\(\sqrt{a^2-ab+b^2}=\sqrt{b.\frac{a^2-ab+b^2}{b}}=\sqrt{b.\left(\frac{a^2}{b}-a+b\right)}\le\frac{\frac{a^2}{b}-a+2b}{2}\)
tương tự mấy cái trên
bài này hay đấy
Áp dụng BĐT Cô-si cho 3 số không âm, ta có :
\(\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\ge3\sqrt[3]{\frac{1+\sqrt{a}}{1+\sqrt{b}}.\frac{1+\sqrt{b}}{1+\sqrt{c}}.\frac{1+\sqrt{c}}{1+\sqrt{a}}}=3\)
Chứng minh \(\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\le3+a+b+c\)( 1 )
đặt \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)( x,y,z \(\ge\)0 )
do a,b,c là số nguyên
Nếu a = b = c = 0 thì x = y = z = 0 nên ( 1 ) đúng
Nếu a,b,c không đồng thời bằng 0 \(\Rightarrow\)x+ y + z \(\ge\)1
Ta có : VT ( 1 )
\(\Leftrightarrow\frac{\left(1+x\right)\left(1+y\right)-\left(1+x\right)y}{1+y}+\frac{\left(1+y\right)\left(1+z\right)-\left(1+y\right)z}{1+z}+\frac{\left(1+z\right)\left(1+x\right)-\left(1+z\right)x}{1+z}\)
\(=3+x+y+z-\left[\frac{\left(1+x\right)y}{1+y}+\frac{\left(1+y\right)z}{1+z}+\frac{\left(1+z\right)x}{1+x}\right]\)
\(\le3+x+y+z-\frac{\left(1+x\right)y+\left(1+y\right)z+\left(1+z\right)x}{1+x+y+z}=3+x+y+z-\frac{x+y+z+xy+yz+xz}{1+x+y+z}\)
\(=3+\frac{x^2+y^2+z^2+xy+yz+xz}{1+x+y+z}\le3+x^2+y^2+z^2\)
Cần chứng minh : \(\frac{x^2+y^2+z^2+xy+yz+xz}{1+x+y+z}\le x^2+y^2+z^2\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2\right)\ge xy+yz+xz\)
Mà \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)\ge1.\left(x^2+y^2+z^2\right)\ge xy+yz+xz\)
suy ra đpcm
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{2c}\right)=\left(x;y;z\right)\)
BĐT trở thành: \(\frac{1}{x}+\frac{1}{y}+\frac{4}{z}\ge\frac{8}{\sqrt{x^2+y^2+\frac{z^2}{2}}}\)
Ta có: \(VT=\frac{1}{x}+\frac{1}{y}+\frac{2^2}{z}\ge\frac{\left(1+1+2\right)^2}{x+y+z}=\frac{16}{x+y+z}\) (1)
\(\left(1.x+1.y+\sqrt{2}.\frac{z}{\sqrt{2}}\right)^2\le\left(1+1+2\right)\left(x^2+y^2+\frac{z^2}{2}\right)\)
\(\Rightarrow x+y+z\le2\sqrt{x^2+y^2+\frac{z^2}{2}}\)
\(\Rightarrow VP=\frac{8}{\sqrt{x^2+y^2+\frac{z^2}{2}}}\le\frac{16}{x+y+z}\)(2)
Từ (1); (2) suy ra đpcm
Dấu "=" xảy ra khi \(x=y=\frac{z}{2}\) hay \(a=b=\frac{c}{2}\)