Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
a, \(3\sqrt{8}\) + \(\sqrt{18}\) - \(\sqrt{72}\)
=\(6\sqrt{2}\)+\(3\sqrt{2}\)-\(6\sqrt{2}\)
=\(3\sqrt{2}\)(3+1-3)
=3\(\sqrt{2}\)
ΔIEA đồng dạng với ΔIOB
=>IE/IO=AE/BO
=>AE/3=4/6
=>AE=2cm
V=3,14*2^2*4=50,2cm3
Sau 2 phút = \(\dfrac{1}{30}\) giờ thì máy bay bay đc \(\dfrac{1}{30}\cdot300=10\left(km\right)\)
Do đó máy bay ở độ cao \(10\cdot\sin25^0\approx4\left(km\right)=4000\left(m\right)\)
a: 1995:19=105 dư 0
=>1995 là năm nhuận âm lịch
2023:19=106 dư 9
=>2023 là năm nhuận âm lịch
2100:19=110 dư 10
=>2100 ko là năm nhuận âm lịch
b: 1928
1: Xét (O) có
ΔABD nội tiếp
AB là đường kính
Do đó: ΔABD vuông tại D
=>AD\(\perp\)BD tại D
=>BD\(\perp\)AC tại D
Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE\(\perp\)EB tại E
=>AE\(\perp\)CB tại E
Xét ΔCAB có
AE,BD là các đường cao
AE cắt BD tại H
Do đó: H là trực tâm của ΔCAB
=>CH\(\perp\)AB tại K
2: ΔCDH vuông tại D
mà DF là đường trung tuyến
nên DF=FH
=>ΔFDH cân tại F
=>\(\widehat{FDH}=\widehat{FHD}\)
mà \(\widehat{FHD}=\widehat{KHB}\)(hai góc đối đỉnh)
và \(\widehat{KHB}=\widehat{DAB}\left(=90^0-\widehat{DBA}\right)\)
nên \(\widehat{FDH}=\widehat{DAB}\)
Ta có: ΔOBD cân tại O
=>\(\widehat{ODB}=\widehat{OBD}=\widehat{DBA}\)
\(\widehat{FDO}=\widehat{FDH}+\widehat{ODB}\)
\(=\widehat{DBA}+\widehat{DAB}=90^0\)
=>DF là tiếp tuyến của (O)
Em cần câu mấy nhỉ?
dạ giúp được câu nào giúp dùm e