Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
góc B chung
DO đó: ΔAHB\(\sim\)ΔCAB
Suy ra: AH/CA=AB/CB
hay \(AH\cdot BC=AB\cdot AC\)
b: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
nên ADHE là hình chữ nhật
c: BC=15cm
=>AH=7,2(cm)
mà AH=DE
nên DE=7,2(cm)
a) Xét \(\Delta AHB\) và \(\Delta CAB:\)
\(\widehat{AHB}=\widehat{CAB}\left(=90^o\right).\\ \widehat{ABH}chung.\\ \Rightarrow\Delta AHB\sim\Delta CAB\left(g-g\right).\)
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{CB}.\\ \Rightarrow AH.CB=AB.AC.\)
b) Xét tứ giác DHEA:
\(\widehat{DAE}=90^o;\widehat{ADH}=90^o;\widehat{AEH}=90^o.\)
\(\Rightarrow\) Tứ giác DHEA là hình chữ nhật.
c) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=9^2+12^2.\\ \Rightarrow BC=15\left(cm\right).\)
Xét \(\Delta ABC\) vuông tại A; đường cao AH:
\(AH.BC=AB.AC\) (Hệ thức lượng).
\(\Rightarrow AH.15=9.12.\\ \Rightarrow AH=7,2\left(cm\right).\)
Mà \(AH=DE\) (Tứ giác DHEA là hình chữ nhật).
\(\Rightarrow AH=DE=7,2\left(cm\right).\)
bạn đăng tách ra nhé
Bài 3 :
Ta có :\(1+\dfrac{1}{2+x}=\dfrac{12}{x^3+8}\)
đk : x khác -2
\(\Rightarrow x^3+8+x^2-2x+4=12\Leftrightarrow x^3+x^2-2x=0\)
\(\Leftrightarrow x\left(x^2+x-2\right)=0\Leftrightarrow x\left(x-1\right)\left(x+2\right)=0\Leftrightarrow x=0;x=1;x=-2\left(ktm\right)\)
Bài 2:
a,ĐKXĐ:\(\left\{{}\begin{matrix}x\ne0\\x\ne2\end{matrix}\right.\)
\(\dfrac{1}{x}+\dfrac{2}{x-2}=0\\ \Leftrightarrow\dfrac{x-2}{x\left(x-2\right)}+\dfrac{2x}{x\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{x-2+2x}{x\left(x-2\right)}=0\\ \Rightarrow3x-2=0\\ \Leftrightarrow x=\dfrac{2}{3}\left(tm\right)\)
b, ĐKXĐ:\(x\ne\pm2\)
\(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{5x-2}{4-x^2}\\ \Leftrightarrow\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2-5x}{x^2-4}\\ \Leftrightarrow\dfrac{x^2-3x+2-x^2-2x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2-5x}{\left(x-2\right)\left(x+2\right)}=0\\ \Leftrightarrow\dfrac{-5x+2-2+5x}{\left(x-2\right)\left(x+2\right)}=0\\ \Leftrightarrow0=0\left(tm\right)\)
4.2:
a: x^2-x+1=x^2-x+1/4+3/4
=(x-1/2)^2+3/4>=3/4>0 với mọi x
=>x^2-x+1 ko có nghiệm
b: 3x-x^2-4
=-(x^2-3x+4)
=-(x^2-3x+9/4+7/4)
=-(x-3/2)^2-7/4<=-7/4<0 với mọi x
=>3x-x^2-4 ko có nghiệm
5:
a: x^2+y^2=25
x^2-y^2=7
=>x^2=(25+7)/2=16 và y^2=16-7=9
x^4+y^4=(x^2)^2+(y^2)^2
=16^2+9^2
=256+81
=337
b: x^2+y^2=(x+y)^2-2xy
=1^2-2*(-6)
=1+12=13
x^3+y^3=(x+y)^3-3xy(x+y)
=1^3-3*1*(-6)
=1+18=19
\(a)\)
\(A=\left(m-1\right)^3-\left(m-2\right)^3\)
\(=\left(m^3-3m^2+3m-1\right)-\left(m^3-6m^2+12m-8\right)\)
\(=m^3-3m^2+3m-1-m^3+6m^2-12m+8\)
\(=3m^2-9m+7\)
\(B=\left(3m-1\right)\left(3m+1\right)\)
\(=9m^2-1\)
\(\dfrac{1}{9}A=B-7\)
\(\Rightarrow\dfrac{1}{9}\left(3m^2-9m+7\right)=9m^2-1-7\)
\(\Rightarrow3m^2-9m+7=81m^2-72\)
\(\Rightarrow78m^2+9m-79=0\)
\(\Rightarrow m=\dfrac{-9\pm\sqrt{24729}}{156}\)
\(b)\)
\(A< B\)
\(\Rightarrow3m^2-9m+7< 9m^2-1\)
\(\Rightarrow6m^2+9m-8>0\)
\(\Rightarrow\left[{}\begin{matrix}m>\dfrac{-9+\sqrt{273}}{12}\\m< \dfrac{-9-\sqrt{273}}{12}\end{matrix}\right.\)
a: \(=\dfrac{x^3+2x+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^3-x^2+3x-3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+3}{x^2+x+1}\)
b: \(=\dfrac{x^2-2x-3+x^2+2x-3+2x-2x^2}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x-6}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x+3}\)
c: \(=\dfrac{6-7+x}{3\left(x-1\right)}=\dfrac{x-1}{3\left(x-1\right)}=\dfrac{1}{3}\)
d: \(=\dfrac{x^3+2x+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^3-x^2+3x-3}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+3}{x^2+x+1}\)
b1:
AMF đồng dạng ABC
tỉ số : AM/AF = AB/AC
AM/MF = AB/BC
AF/FM = AC/CB
MFD đồng dạng CFD
tỉ số : MF/FD= FD/DC
FM/MD = DC/CF
FD/DM = DF/FC
AFB đồng dạng CFB
tỉ số : AB/ BF = BF/FC
AF/AB =BF/ BC
AF / FB = CF/BC
Bạn giúp nốt hộ mik bài 3 được ko cảm ơn bạn