Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a= \(\sqrt[3]{2-\sqrt{3}}\) + \(\sqrt[3]{2+\sqrt{3}}\)
Suy ra a^3 = 3a +4 => (a^2 -3)a=4
<=> \(\left(\frac{4}{a^2-3}\right)^3\)= a^3 <=>\(\frac{64}{\left(a^2-a\right)^3}\) -3a = 4
mà 4 nguyên suy ra đpcm
\(a>0\)
Có \(a^3=2-\sqrt{3}+3\sqrt[3]{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\left(\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2-\sqrt{3}}\right)+2+\sqrt{3}\)
\(\Leftrightarrow a^3=4+3a\)
\(\Leftrightarrow a\left(a^2-3\right)=4\)\(\Leftrightarrow a^2-3=\dfrac{4}{a}\)
\(\Leftrightarrow\dfrac{64}{\left(a^2-3\right)^3}=a^{.3}\)
\(\Leftrightarrow\dfrac{64}{\left(a^2-3\right)^3}-3a=a^2-3a=4\) là số nguyên.
Ta có \(3a+1\ge\left(\dfrac{\sqrt{10}-1}{3}a+1\right)^2\Leftrightarrow a\left(3-a\right)\ge0\) (luôn đúng)
Do đó \(\sqrt{3a+1}\ge\dfrac{\sqrt{10}-1}{3}a+1\).
Tương tự, \(\sqrt{3b+1}\ge\dfrac{\sqrt{10}-1}{3}b+1;\sqrt{3c+1}\ge\dfrac{\sqrt{10}-1}{3}c+1\).
Do đó \(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\ge\sqrt{10}+2\).
Dấu "=" xảy ra khi chẳng hạn a = 3; b = c = 0
Tham khảo:
https://hoc24.vn/hoi-dap/tim-kiem?id=219071991005&q=Cho%203%20s%E1%BB%91%20th%E1%BB%B1c%20kh%C3%B4ng%20%C3%A2m%20a%2Cb%2Cc%20v%C3%A0%20a%20b%20c%3D3%20T%C3%ACm%20GTLN%20v%C3%A0%20GTNN%20c%E1%BB%A7a%20bi%E1%BB%83u%20th%E1%BB%A9c%20K%3D%5C%28%5Csqrt%7B3a%201%7D%20%5Csqrt%7B3b%201%7D%20%5Csqrt%7B3c%201%7D%5C%29
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
\(a=\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\)
=>\(a^3=2-\sqrt{3}+2+\sqrt{3}+3\cdot\left(\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\right)\cdot\sqrt[3]{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
=>\(a^3=4+3a\)
=>\(a^3-3a=4\)
\(\Leftrightarrow a^2-3=\dfrac{4}{a}\)
\(\left(a^2-3\right)^3\)
\(=\left(\dfrac{4}{a}\right)^3=\dfrac{64}{a^3}\)
\(C=\dfrac{64}{\left(a^2-3\right)^3}-3a\)
\(=64:\dfrac{64}{a^3}-3a\)
=a^3-3a
=4