Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mik cần lời giải á, các bạn toàn cho mik đáp án hoặc là cho mỗi câu 123 (Q▪︎Q)
-Bài 3:
2) -Áp dụng BĐT Caushy Schwarz ta có:
\(A=\dfrac{1}{x^3+3xy^2}+\dfrac{1}{y^3+3x^2y}\ge\dfrac{\left(1+1\right)^2}{x^3+3xy^2+3x^2y+y^3}=\dfrac{4}{\left(x+y\right)^3}\ge\dfrac{4}{1^3}=4\)-Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
6: \(=x^3\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x^2+x+1\right)\)
7: =(x-4)(x+2)
2/
\(2x^3-8x=2x\left(x^2-4\right)=2x\left(x-2\right)\left(x+2\right)\)
3/
\(9x^2-\left(x-1\right)^2=\left(3x\right)^2-\left(x-1\right)^2=\left(3x-x+1\right)\left(3x+x-1\right)\)
4/
\(x^2-3x+6y-4y^2=x^2-4y^2-3x+6y=\left(x^2-4y^2\right)-\left(3x-6y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-3\left(x-2y\right)=\left(x-2y\right)\left(x+2y-3\right)\)
7: =(x-4)(x+2)
4: \(=\left(x-2y\right)\left(x+2y\right)-3\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y-3\right)\)
\(1,=5x\left(1-4x+4x^2\right)=5x\left(2x-1\right)^2\\ 2,=x\left(x-2y\right)-3\left(x-2y\right)=\left(x-3\right)\left(x-2y\right)\\ 3,=4x^2-\left(y+3\right)^2=\left(2x+y+3\right)\left(2x-y-3\right)\)
Bài 4:
\(P=\dfrac{4x^2-2x+7}{2x-1}=\dfrac{2x\left(2x-1\right)+7}{2x-1}=2x+\dfrac{7}{2x-1}\in Z\\ \Leftrightarrow2x-1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Leftrightarrow x\in\left\{-3;0;1;4\right\}\\ Q=\dfrac{4x^2-2x+3}{2x-1}=\dfrac{2x\left(2x-1\right)+3}{2x-1}=2x+\dfrac{3}{2x-1}\in Z\\ \Leftrightarrow2x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-1;0;1;2\right\}\)
Bài 5:
\(M=\dfrac{\left(5x-1\right)\left(5x+1\right)}{1-5x}+\dfrac{\left(y-3\right)\left(5x+1\right)}{y-3}=-\left(5x+1\right)+5x+1=0\)
Bài 6:
\(VT=\dfrac{a\left(a+3b\right)}{\left(a+3b\right)\left(a-3b\right)}-\dfrac{\left(2a+b\right)\left(a-3b\right)}{\left(a-3b\right)^2}=\dfrac{a}{a-3b}-\dfrac{2a+b}{a-3b}=\dfrac{-a-b}{a-3b}\)
\(VP=\dfrac{\left(a+b\right)\left(a+c\right)}{\left(a+c\right)\left(3b-a\right)}=\dfrac{a+b}{3b-a}=\dfrac{-a-b}{a-3b}\)
Vậy ta đc đpcm
\(1,\\ a,\dfrac{8x}{2xy}=\dfrac{4x}{y}\\ b,\dfrac{2xy}{6y}=\dfrac{x}{3}\\ c,\dfrac{3\left(x+2\right)}{2x}=\dfrac{6\left(x+2\right)}{4x}\\ d,\dfrac{4\left(x-2\right)}{3\left(x+1\right)}=\dfrac{8\left(x-2\right)x}{6\left(x+1\right)x}\\ 2,\\ \dfrac{x^2+3x+2}{x^2+x}=\dfrac{x^2+x+2x+2}{x\left(x+1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)}=\dfrac{x+2}{x}\\ 3,\\ \dfrac{x^2-3x}{x^2-9}=\dfrac{x}{x+3}\)
Bài 3:
Ta có: \(x^2-2x+4=\left(x-1\right)^2+3\ge3\forall x\)
\(\Leftrightarrow P=\dfrac{15}{x^2-2x+4}=\dfrac{15}{\left(x-1\right)^2+3}\le5\forall x\)
Dấu '=' xảy ra khi x=1
Bài 1:
a: \(\Leftrightarrow x^2-3x+5x-x^2+8=0\)
=>2x=-8
hay x=-4
b: \(\Leftrightarrow\left(x+4\right)\left(3-x\right)=0\)
hay \(x\in\left\{-4;3\right\}\)
Bài 2:
\(\Leftrightarrow x^4-x^3+5x^2-5x^2+5x-25+a+25⋮x^2-x+5\)
=>a+25=0
hay a=-25
Gọi số sản phẩm àm 2 ng công nhân được giao là x (x∈N*, sản phẩm)
Thời gian hoàn thành công việc của người thứ nhất là: \(\dfrac{x}{40}\left(h\right)\)
Thời gian hoàn thành công việc của ngươi thứ hai là: \(\dfrac{x}{50}\left(h\right)\)
Vì ng thứ nhất hoàn thành công việc chậm hơn người thứ hai 2 giờ nên ta có PT:
\(\dfrac{x}{40}-\dfrac{x}{50}=2\)
⇔\(50x-40x=4000\)
⇔\(10x=4000\)
⇔\(x=400\)
Vậy số sản phẩm mỗi công nhân được giao là 400 (sản phẩm)