Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Bài 3:
2) -Áp dụng BĐT Caushy Schwarz ta có:
\(A=\dfrac{1}{x^3+3xy^2}+\dfrac{1}{y^3+3x^2y}\ge\dfrac{\left(1+1\right)^2}{x^3+3xy^2+3x^2y+y^3}=\dfrac{4}{\left(x+y\right)^3}\ge\dfrac{4}{1^3}=4\)-Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Bài 1:
a: \(\Leftrightarrow x^2-3x+5x-x^2+8=0\)
=>2x=-8
hay x=-4
b: \(\Leftrightarrow\left(x+4\right)\left(3-x\right)=0\)
hay \(x\in\left\{-4;3\right\}\)
Bài 2:
\(\Leftrightarrow x^4-x^3+5x^2-5x^2+5x-25+a+25⋮x^2-x+5\)
=>a+25=0
hay a=-25
\(a,A=\dfrac{-3-4}{-3+5}=-\dfrac{7}{2}\\ b,B=\dfrac{2x-8+x+20}{\left(x+4\right)\left(x-4\right)}=\dfrac{3\left(x+4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{3}{x-4}\\ c,M=AB=\dfrac{x-4}{x+5}\cdot\dfrac{3}{x-4}=\dfrac{3}{x+5}\in Z\\ \Leftrightarrow x+5\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-8;-6;-2\right\}\left(x\ne-4\right)\)
\(18,\\ \dfrac{1-9x^2}{x^2+4x}:\dfrac{2-6x}{3x}\left(x\ne0;x\ne-4;x\ne\dfrac{1}{3}\right)\\ =\dfrac{\left(1-3x\right)\left(1+3x\right)}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(1-3x\right)}=\dfrac{3\left(1+3x\right)}{2\left(x+4\right)}\\ \dfrac{27-x^3}{5x+10}:\dfrac{x-3}{3x+6}\left(x\ne-2;x\ne3\right)=\dfrac{\left(3-x\right)\left(x^2+3x+9\right)}{5\left(x+2\right)}:\dfrac{3\left(x+2\right)}{-\left(3-x\right)}\\ =\dfrac{-3\left(x^2+3x+9\right)}{5}\)
\(19,\\ \dfrac{4x^2}{25y^2}:\dfrac{6x}{5y}:\dfrac{2x}{9y}\left(x,y\ne0\right)=\dfrac{4x^2\cdot5y\cdot9y}{25y^2\cdot6x\cdot2x}=\dfrac{3}{5}\)
1: \(P=\dfrac{2x-5}{x\left(x-1\right)}-\dfrac{x+5}{x}+\dfrac{2x+5}{x-1}\)
\(=\dfrac{2x-5-\left(x+5\right)\left(x-1\right)+x\left(2x+5\right)}{x\left(x-1\right)}\)
\(=\dfrac{2x-5-\left(x^2+4x-5\right)+2x^2+5x}{x\left(x-1\right)}\)
\(=\dfrac{2x^2+7x-5-x^2-4x+5}{x\left(x-1\right)}\)
\(=\dfrac{x^2+3x}{x\left(x-1\right)}=\dfrac{x\left(x+3\right)}{x\left(x-1\right)}=\dfrac{x+3}{x-1}\)
2: \(x^2-1=0\)
=>\(x^2=1\)
=>\(\left[{}\begin{matrix}x=1\left(loại\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
Thay x=-1 vào P, ta được:
\(P=\dfrac{-1+3}{-1-1}=\dfrac{2}{-2}=-1\)
3: P<1
=>P-1<0
=>\(\dfrac{x+3}{x-1}-1< 0\)
=>\(\dfrac{x+3-x+1}{x-1}< 0\)
=>\(\dfrac{4}{x-1}< 0\)
=>x-1<0
=>x<1
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x< 1\\x\ne0\end{matrix}\right.\)
\(a,P=\left[\dfrac{\left(x-1\right)^2}{x^2+x+1}-\dfrac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right]\cdot\dfrac{x\left(x^2+1\right)}{2x}\\ P=\dfrac{x^3-3x^2+3x-1-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\\ P=\dfrac{x^3-1}{x^3-1}\cdot\dfrac{x^2+1}{2}=\dfrac{x^2+1}{2}\)
\(b,\left(x+1\right)^2\ge0\Leftrightarrow x^2+2x+1\ge0\Leftrightarrow x^2+1\ge2x\\ \Leftrightarrow\dfrac{x^2+1}{2}\ge x\Leftrightarrow P\ge x\)
Câu 1: A
Câu 2: B
Câu 3: D
Câu 4: A
Câu 5: C
Câu 6: B
Câu 7: A
Câu 9: B
6: \(=x^3\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x^2+x+1\right)\)
7: =(x-4)(x+2)
2/
\(2x^3-8x=2x\left(x^2-4\right)=2x\left(x-2\right)\left(x+2\right)\)
3/
\(9x^2-\left(x-1\right)^2=\left(3x\right)^2-\left(x-1\right)^2=\left(3x-x+1\right)\left(3x+x-1\right)\)
4/
\(x^2-3x+6y-4y^2=x^2-4y^2-3x+6y=\left(x^2-4y^2\right)-\left(3x-6y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-3\left(x-2y\right)=\left(x-2y\right)\left(x+2y-3\right)\)
1B
2D
3D
4C
5A
6A
7A
8D