K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

Ta có :

\(\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)\)

\(=\left(-xy\right).\left(-5y-9+xy\right):\left(-xy\right)\)

\(=-5y-9+xy\)

Thay \(x=1,y=2\) vào ta có :

\(-5y-9+xy=\left(-5\right).2-9+1.2=-17\)

3x=2y

nên x/2=y/3

Đặt x/2=y/3=k

=>x=2k; y=3k

\(P=\dfrac{\left(2k\right)^2-2k\cdot3k+\left(3k\right)^2}{\left(2k\right)^2+2k\cdot3k+\left(3k\right)^2}\)

\(=\dfrac{4k^2-6k^2+9k^2}{4k^2+6k^2+9k^2}=\dfrac{4-6+9}{4+6+9}=\dfrac{7}{19}\)

NM
9 tháng 9 2021

\(\frac{3}{\sqrt{7}-1}+\frac{3}{\sqrt{7}+1}=\frac{3\left[\sqrt{7}+1+\sqrt{7}-1\right]}{\left(\sqrt{7}+1\right)\left(\sqrt{7}-1\right)}=\frac{6\sqrt{7}}{6}=\sqrt{7}\)

\(\frac{3}{\sqrt{X}-1}-\frac{2}{\sqrt{X}+1}+\frac{X-7}{X-1}=\frac{3\left(\sqrt{X}+1\right)-2\left(\sqrt{X}-1\right)+X-7}{\left(\sqrt{X}+1\right)\left(\sqrt{X}-1\right)}=\frac{X+\sqrt{X}-2}{\left(\sqrt{X}+1\right)\left(\sqrt{X}-1\right)}=\frac{\sqrt{X}+2}{\sqrt{X}+1}\)

9 tháng 9 2021

TÍNH GIÁ TRỊ BIỂU THỨC:

\(\frac{3}{\sqrt{7}-1}\) + \(\frac{3}{\sqrt{7}+1}\)\(\frac{3\left(\sqrt{7}+1\right)+3\left(\sqrt{7}-1\right)}{\left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right)}\)\(\frac{3\sqrt{7}+3+3\sqrt{7}-3}{6}\)=\(\frac{6\sqrt{7}}{6}\)=\(\sqrt{7}\)

RÚT GỌN BIỂU THỨC:

\(\frac{3}{\sqrt{X}-1}\)-\(\frac{2}{\sqrt{X}+1}\)+\(\frac{X-7}{X-1}\)

\(\frac{3\left(\sqrt{X}+1\right)}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)-\(\frac{2\left(\sqrt{X}-1\right)}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)+\(\frac{X-7}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)

\(\frac{3\sqrt{X}+3-2\sqrt{X}+2+X-7}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)

\(\frac{X+\sqrt{X}-2}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)

\(\frac{\left(\sqrt{X}+1\right)\left(\sqrt{X}-2\right)}{\left(\sqrt{X}-1\right)\left(\sqrt{X}+1\right)}\)

\(\frac{\sqrt{X}-2}{\sqrt{X}-1}\)

CHÚC EM HỌC TỐT!

Sửa đề; \(A=\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\)

a: \(A=\dfrac{\sqrt{x}-1+\sqrt{x}+1-2}{x-1}=\dfrac{2\sqrt{x}-2}{x-1}=\dfrac{2}{\sqrt{x}+1}\)

b: Khi x=3+2căn 2 thì \(A=\dfrac{2}{\sqrt{2}+1+1}=\dfrac{2}{\sqrt{2}+2}=2-\sqrt{2}\)

27 tháng 11 2018

@Arakawa White

@DƯƠNG PHAN KHÁNH DƯƠNG

@Nguyễn Việt Lâm

@Nguyễn Huy Tú

giúp với ạ !

27 tháng 11 2018

@Trần Trung Nguyên

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Đề bị lỗi công thức rồi bạn.

a: Sửa đề: \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

Khi x=9 thì \(B=\dfrac{\sqrt{9}+1}{\sqrt{9}+2}\)

\(=\dfrac{3+1}{3+2}=\dfrac{4}{5}\)

b: \(A=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{6+\sqrt{x}}{x-4}\)

\(=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+6}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)-\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x-5\sqrt{x}+6+x+2\sqrt{x}-\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2x-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}+2}\)

c: P=A/B

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+2}:\dfrac{\sqrt{x}+1}{\sqrt{x}+2}=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)

\(P-2=\dfrac{2\sqrt{x}}{\sqrt{x}+1}-2=\dfrac{2\sqrt{x}-2\sqrt{x}-2}{\sqrt{x}+1}\)

\(=\dfrac{-2}{\sqrt{x}+1}< 0\)

=>P<2

29 tháng 10 2023

a) Thay x = 81 vào A ta có:

\(A=\dfrac{4\sqrt{81}}{\sqrt{81}-5}=\dfrac{4\cdot9}{9-5}=\dfrac{4\cdot9}{4}=9\)

b) \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{x+\sqrt{x}-2}\left(x\ne1;x\ge0\right)\)

\(B-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(B=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(B=\dfrac{x-4+\sqrt{x}-1+5-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(B=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(B=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(B=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

c) \(\dfrac{A}{B}< 4\) khi

\(\dfrac{4\sqrt{x}}{\sqrt{x}-5}:\dfrac{\sqrt{x}}{\sqrt{x}+2}< 4\)

\(\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-5}< 4\)

\(\Leftrightarrow\dfrac{4\sqrt{x}+8-4\left(\sqrt{x}-4\right)}{\sqrt{x}-5}< 0\)

\(\Leftrightarrow\dfrac{24}{\sqrt{x}-5}< 0\)

\(\Leftrightarrow\sqrt{x}-5< 0\)

\(\Leftrightarrow x< 25\)

Kết hợp với đk: 

\(0\le x< 5\)