Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn: A đạt GTLN khi \(\dfrac{1}{A}\) đạt GTNN
Ta có: \(x^2+2\ge0\forall x\)
\(\Rightarrow A=\dfrac{1}{x^2+2}\le\dfrac{1}{2}\forall x\)
Vậy GTLN của A là 1/2
=> A
Câu 1: A
Câu 2: B
Câu 3: D
Câu 4: A
Câu 5: C
Câu 6: B
Câu 7: A
Câu 9: B
Mik cần lời giải á, các bạn toàn cho mik đáp án hoặc là cho mỗi câu 123 (Q▪︎Q)
3:
a: Xét ΔABC có M,N lần lượt là trung điểm của AC,AB
nên MN là đường trung bình
=>MN//BC và MN=BC/2
Xét tứ giác BNMC có
NM//BC
góc NBC=góc MCB
=>BNMC là hình thang cân
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
=>AH=AK
Xét ΔABC có AH/AC=AK/AB
nên KH//BC
Xét tứ giác BKHC có
HK//BC
HB=KC
=>BKHC là hình thang cân
2:
a: ABCD là hình thang cân
=>góc D=góc C=70 độ
góc A=góc B=180-70=110 độ
b: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc D=góc C
=>ΔAHD=ΔBKC
=>DH=CK
(x^2-6x+8)(x^2-8x+15)+1
=(x^2-4x-2x+8)(x^2-5x-3x+15)+1
=(x(x-4)-2(x-4))(x(x-5)-3(x-5))+1
=(x-4)(x-2)(x-5)(x-3)+1
=(x-2)(x-5)(x-3)(x-4)+1
=(x^2-7x+10)(x^2-7x+12)+1
Gọi a=x^2-7x+11, ta có
(a-1)(a+1)+1
= a2 - 1 + 1
= a2
= (x2 - 7x + 11)2
-Bài 3:
2) -Áp dụng BĐT Caushy Schwarz ta có:
\(A=\dfrac{1}{x^3+3xy^2}+\dfrac{1}{y^3+3x^2y}\ge\dfrac{\left(1+1\right)^2}{x^3+3xy^2+3x^2y+y^3}=\dfrac{4}{\left(x+y\right)^3}\ge\dfrac{4}{1^3}=4\)-Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Câu 1: A
Câu 2: B
Câu 3: D
Câu 4: A
Câu 5: C
Câu 6: B
Câu 7: A
Câu 9: B