K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2021

a) Ta có: AB//CD.

=>ABH=BDC (2 góc so le trong).

=> ∆AHB~∆BCD(g.g).

b) ∆ABD có :  DB²=AB²+AD²( Định lý Pitago)

=> DB= 15(cm).

Ta có ∆ABH~∆BCD(cmt).

=>AH/BC=AD/BD.

Hay AH=9.12/15=7,2(cm).

c)Ta có ∆AHB~∆BCD cmt.

=> HBA=CBD. (1)

Ta lại có : CBD= ADH (AB//CD).(2)

Từ 1 và 2 => HAB=ADH.

=>∆DHA~∆AHB(g.g).

S∆DHA/S∆AHB=(AD/AB)²=9/16

d) từ câu (a) và (b) => ∆BCD~∆DHA.

Cm ∆DHA~∆MDA(g.g)

Từ đó  suy ra ∆BDC~∆MDA.

Sau đó cm ∆BCD~∆ADC(g.g).

=> ∆MDA~∆ADC(g.g).

=>Ad/DC=DM/DC.

=>Đpcm.

 

 

 

 

 

 

 

Câu 10:

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\notin\left\{2;-1\right\}\\y\ne-5\end{matrix}\right.\)

\(A=\dfrac{y+5}{x^2-4x+4}\cdot\dfrac{x^2-4}{x+1}\cdot\dfrac{x-2}{y+5}\)

\(=\dfrac{y+5}{y+5}\cdot\dfrac{\left(x^2-4\right)}{x^2-4x+4}\cdot\dfrac{x-2}{x+1}\)

\(=\dfrac{\left(x^2-4\right)\cdot\left(x-2\right)}{\left(x+1\right)\left(x^2-4x+4\right)}\)

\(=\dfrac{\left(x+2\right)\left(x-2\right)\cdot\left(x-2\right)}{\left(x+1\right)\left(x-2\right)^2}=\dfrac{x+2}{x+1}\)

b: \(A=\dfrac{x+2}{x+1}\)

=>A không phụ thuộc vào biến y

Khi x=1/2 thì \(A=\left(\dfrac{1}{2}+2\right):\left(\dfrac{1}{2}+1\right)=\dfrac{5}{2}:\dfrac{3}{2}=\dfrac{5}{2}\cdot\dfrac{2}{3}=\dfrac{5}{3}\)

Câu 12:

a: \(A=\dfrac{x}{x+3}+\dfrac{2x}{x-3}+\dfrac{9-3x^2}{x^2-9}\)

\(=\dfrac{x}{x+3}+\dfrac{2x}{x-3}+\dfrac{9-3x^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{x\left(x-3\right)+2x\left(x+3\right)+9-3x^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{x^2-3x+2x^2+6x+9-3x^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{3x+9}{\left(x+3\right)\left(x-3\right)}=\dfrac{3\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{3}{x-3}\)

b: Khi x=1 thì \(A=\dfrac{3}{1-3}=\dfrac{3}{-2}=-\dfrac{3}{2}\)

\(x+\dfrac{1}{3}=\dfrac{10}{3}\)

=>\(x=\dfrac{10}{3}-\dfrac{1}{3}\)

=>\(x=\dfrac{9}{3}=3\left(loại\right)\)

Vậy: Khi x=3 thì A không có giá trị

c: \(B=A\cdot\dfrac{x-3}{x^2-4x+5}\)

\(=\dfrac{3}{x-3}\cdot\dfrac{x-3}{x^2-4x+5}\)

\(=\dfrac{3}{x^2-4x+5}\)

\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1>=1\forall x\) thỏa mãn ĐKXĐ

=>\(B=\dfrac{3}{x^2-4x+5}< =\dfrac{3}{1}=3\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi x-2=0

=>x=2

12 tháng 11 2021

a: Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)

DO đó: AMHN là hình chữ nhật

14 tháng 3 2022

`x - 3/3 = 4 - 1 - 2x/5`

`->` `x = (-5)`

\(\dfrac{x-3}{3}=4-\dfrac{1-2x}{5}\)

=>5(x-3)=60-3(1-2x)

=>5x-15=60-3+6x

=>5x-15=6x+57

=>6x+57=5x-15

hay x=-72(nhận)

Bài 1: 

a: \(=-10x^3+20x^4-5x\)

b: \(=\dfrac{1}{3}a^2b+7a^5-1\)

c: \(=a^3+8+25-a^3=33\)

d: \(=x^2-16+8-x^3=-x^3+x^2-8\)

e: \(=a^3+1+8-a^3=9\)

f: \(=\dfrac{7-2x+4x-8}{2x+3}=\dfrac{2x-1}{2x+3}\)

g: \(=\dfrac{3}{2\left(x+3\right)}-\dfrac{2}{x\left(x+3\right)}\)

\(=\dfrac{3x-4}{2x\left(x+3\right)}\)

6 tháng 5 2022

-Bài 3:

2) -Áp dụng BĐT Caushy Schwarz ta có:

\(A=\dfrac{1}{x^3+3xy^2}+\dfrac{1}{y^3+3x^2y}\ge\dfrac{\left(1+1\right)^2}{x^3+3xy^2+3x^2y+y^3}=\dfrac{4}{\left(x+y\right)^3}\ge\dfrac{4}{1^3}=4\)-Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

a: =>6x-3x^2-5=4-3x^2-2

=>6x-5=2

=>6x=7

=>x=7/6

b: =>20x+5-12x^2-3x=6x^2-10x+3x-5

=>-12x^2+17x+5-6x^2+7x+5=0

=>-18x^2+24x+10=0

=>x=5/3 hoặc x=-1/3