Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giao điểm AE và BP là F;
Gọi giao điểm QD và AB là H;
Gọi kéo dài AD cắt BF tại P'
Dễ cm M là trung điểm AC
Xét \(\Delta OMC\) có QD//CM\(\Rightarrow\dfrac{OD}{OM}=\dfrac{QD}{CM}\)(hệ quả tales)
Tương tự với \(\Delta OAM\) có \(\dfrac{OD}{OM}=\dfrac{DH}{AM}\)
\(\Rightarrow\dfrac{QD}{CM}=\dfrac{DH}{AM}\)
Mà CM=AM (vì M là tđ AC)
\(\Rightarrow QD=DH\)
Dễ cm P là trung điểm BF
Xét \(\Delta ABP'\) có DH//BP'
\(\Rightarrow\dfrac{DH}{BP'}=\dfrac{AD}{AP'}\)(tales)
Tương tự với \(\Delta AFP'\) có \(\dfrac{QD}{FP'}=\dfrac{AD}{AP'}\)
\(\Rightarrow\dfrac{DH}{BP'}=\dfrac{QD}{FP'}\)
Mà DH=QD (cmt)
\(\Rightarrow BP'=FP'\)
\(\Rightarrow\)P' là trung điểm BF
\(\Rightarrow P\equiv P'\)
\(\Rightarrow A,D,P\) thẳng hàng
\(\Delta=b^{^2}-4ac=m^{^2}-4\left(3-m\right)=m^{^2}-12+4m=\left(m+2\right)^{^2}-16\)
Phương trình có hai nghiệm phân biệt khi và chỉ khi:
\(\Delta>0\Leftrightarrow\left(m+2\right)^2-16>0\Leftrightarrow m+2>16\Leftrightarrow m>14\\ Viete:\\ x_1+x_2=-\dfrac{b}{a}=m\\ x_1x_2=\dfrac{c}{a}=3-m\)
x1 là nghiệm phương trình nên:
\(x_1^2=mx_1+m-3=m\left(x_1+1\right)-3\\ \Rightarrow\left[m\left(x_1+1\right)-3+3\right]\left(x_2+1\right)=12\\ m\left(x_1+1\right)\left(x_2+1\right)=12\\ m\left(x_1x_2+x_1+x_2+1\right)=12\\ m\left(3-m+m+1\right)=12\\ 4m=12\\ m=3\left(KTM\right)\)
Vậy không tồn tại m thoả đề bài
Lời giải:
$\frac{x-2y}{3z}$ có thể nhận giá trị lớn nhất nếu $x$ lớn nhất và $y,z$ nhỏ nhất có thể.
$x$ lớn nhất có thể nhận là $14$ (theo điều kiện)
$y,z$ nhỏ nhất có thể nhận là $1,2$ (do $y,z$ phân biệt)
Nếu $x=14, y=1,z=2$ thì $\frac{x-2y}{3z}=2$
Nếu $x=14; y=2, z=1$ thì $\frac{x-2y}{3z}=\frac{10}{3}>2$
Đáp án D.
Thay x=1 vào pt ta được pt ẩn m: 1-2(m-1).1+m=0
<=> 1 - 2m + 2 + m = 0
<=> m=3
Thay m=3 vào pt đầu và được: x2 - 4x + 3 = 0
<=> x2 - x - 3x + 3 =0
<=> x(x-1) - 3(x-1)=0
<=> (x-3) (x-1)=0
<=> x-3=0 hoặc x-1=0
<=> x=3 hoặc x=1
Vậy: Khi x=1 thì m=3, nghiệm còn lại của pt là x=3
1, \(\left\{{}\begin{matrix}4x+2y=24\\7x-2y=31\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=55\\y=12-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)
2, thiếu đề
4, \(\left\{{}\begin{matrix}4x-y-24=10x-4y\\3y-2=4-x+y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6x+3y=24\\x+2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6x+3y=24\\-6x-12y=-36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15y=60\\x=6-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=-2\end{matrix}\right.\)
a) Xét (O) có
\(\widehat{BAD}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)
\(\widehat{CAD}\) là góc nội tiếp chắn \(\stackrel\frown{CD}\)
mà \(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
nên \(\stackrel\frown{BD}=\stackrel\frown{CD}\)
hay BD=CD
Ta có: OB=OC(=R)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: BD=CD(cmt)
nên D nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OD là đường trung trực của BC
hay OD\(\perp\)BC(đpcm)
b: \(\Delta=\left(-2m\right)^2-4\left(m-2\right)\)
\(=4m^2-4m+8=\left(2m-1\right)^2+7>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1x_2=\dfrac{c}{a}=m-2\end{matrix}\right.\)
Đặt \(A=\dfrac{4m^2-8m+7}{6x_1x_2-x_1^2-x_2^2+11}\)
\(=\dfrac{4m^2-8m+7}{6x_1x_2-\left(x_1^2+x_2^2\right)+11}\)
\(=\dfrac{4m^2-8m+7}{6x_1x_2-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+11}\)
\(=\dfrac{4m^2-8m+7}{-\left(x_1+x_2\right)^2+8x_1x_2+11}\)
\(=\dfrac{4m^2-8m+7}{-\left(2m\right)^2+8\left(m-2\right)+11}\)
\(=\dfrac{4m^2-8m+7}{-4m^2+8m-16+11}\)
\(=\dfrac{4m^2-8m+7}{-4m^2+8m-5}\)
\(=-\dfrac{4m^2-8m+7}{4m^2-8m+5}\)
\(=-\dfrac{4m^2-8m+5+2}{4m^2-8m+5}\)
\(=-1-\dfrac{2}{4m^2-8m+5}\)
\(=-1-\dfrac{2}{4m^2-8m+4+1}\)
\(=-1-\dfrac{2}{\left(2m-2\right)^2+1}\)
\(\left(2m-2\right)^2+1>=1\forall m\)
=>\(\dfrac{2}{\left(2m-2\right)^2+1}< =\dfrac{2}{1}=2\forall m\)
=>\(-\dfrac{2}{\left(2m-2\right)^2+1}>=-2\forall m\)
=>\(A=-\dfrac{2}{\left(2m-2\right)^2+1}-1>=-3\forall m\)
Dấu '=' xảy ra khi 2m-2=0
=>m=1