K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 9 2021

Từ câu a ta có AE=AF \(\Rightarrow\Delta AEF\) vuông cân tại A

\(\Rightarrow AI\) đồng thời là phân giác \(\widehat{FAE}\Rightarrow\widehat{KAF}=\dfrac{1}{2}\widehat{FAE}=\dfrac{1}{2}.90^0=45^0\)

Lại có ABCD là hình vuông \(\Rightarrow\widehat{ACF}=45^0\)

\(\Rightarrow\widehat{ACF}=\widehat{KAF}\)

Xét hai tam giác AKF và CAF có: \(\left\{{}\begin{matrix}\widehat{ACF}=\widehat{KAF}\\\widehat{AFC}\text{ chung}\end{matrix}\right.\)  

\(\Rightarrow\Delta AKF\sim\Delta CAF\left(g.g\right)\Rightarrow\dfrac{AF}{CF}=\dfrac{FK}{AF}\Rightarrow AF^2=KF.CF\)

9 tháng 9 2021

7 tháng 1 2022
Bài đau
7 tháng 1 2022

lỗi ảnh

7 tháng 1 2022

post vừa rồi bị lỗi ảnh nên em post lại ạ ...

a: Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BFEC là tứ giác nội tiếp

a: Khi x=2 thì (1) sẽ là:

4-2(m+2)+m+1=0

=>m+5-2m-4=0

=>1-m=0

=>m=1

x1+x2=m+1=3

=>x2=3-2=1

b: Δ=(m+2)^2-4(m+1)

=m^2+4m+4-4m-4=m^2>=0

=>Phương trình luôn có hai nghiệm

P=(x1+x2)^2-4x1x1+3x1x2

=(x1+x2)^2-x1x2

=(m+2)^2-m-1

=m^2+4m+4-m-1

=m^2+3m+3

=(m+3/2)^2+3/4>=3/4

Dấu = xảy ra khi m=-3/2

3 tháng 4 2021

undefined

a) Xét (O) có

\(\widehat{BAD}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)

\(\widehat{CAD}\) là góc nội tiếp chắn \(\stackrel\frown{CD}\)

mà \(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

nên \(\stackrel\frown{BD}=\stackrel\frown{CD}\)

hay BD=CD

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: BD=CD(cmt)

nên D nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OD là đường trung trực của BC

hay OD\(\perp\)BC(đpcm)

a:

ΔOBC cân tại O

mà OI là trung tuyến

nên OI vuông góc BC

góc CMO+góc CIO=180 độ

=>CIOM nội tiếp

a: góc AED+góc AFD=180 độ

=>AEDF nội tiếp

=>góc AEF=góc ADF=góc C

=>góc FEB+góc FCB=180 độ

=>FEBC nội tiếp

b: Xét ΔGBE và ΔGFC có

góc GBE=góc GFC

góc G chung

=>ΔGBE đồng dạng với ΔGFC

=>GB/GF=GE/GC

=>GB*GC=GF*GE

15 tháng 11 2021

Bài 3:

Gọi K là giao của AH và BC thì AK là đường cao thứ 3 (H là trực tâm)

Vì \(\widehat{BDC}=\widehat{BEC}=90^0\) nên BEDC nội tiếp

Lại có \(BI=IC=ID=IE=\dfrac{1}{2}BC\) (trung tuyến ứng cạnh huyền) nên I là tâm đg tròn ngoại tiếp BDEC

Gọi G là trung điểm AH thì \(AG=GD=DE=\dfrac{1}{2}AH\) (trung tuyến ứng ch)

Do đó G là tâm () ngoại tiếp tg ADE

Vì \(GA=GD\Rightarrow\widehat{DAG}=\widehat{GDA}\)

Vì \(ID=IB\Rightarrow\widehat{ABI}=\widehat{IDB}\)

Do đó \(\widehat{IDB}+\widehat{GDA}=\widehat{DAG}+\widehat{ABI}=90^0\left(\Delta AKB\perp K\right)\)

Do đó \(\widehat{IDG}=180^0-\left(\widehat{IDB}+\widehat{GDA}\right)=90^0\)

Vậy \(ID\perp IG\) hay ...

NV
28 tháng 7 2021

\(A=\dfrac{\sqrt{20}-6}{\sqrt{14-6\sqrt{5}}}-\dfrac{\sqrt{20}-\sqrt{28}}{\sqrt{12-2\sqrt{35}}}=\dfrac{-2\left(3-\sqrt{5}\right)}{\sqrt{\left(3-\sqrt{5}\right)^2}}+\dfrac{2\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}}\)

\(=\dfrac{-2\left(3-\sqrt{5}\right)}{3-\sqrt{5}}+\dfrac{2\left(\sqrt{7}-\sqrt{5}\right)}{\sqrt{7}-\sqrt{5}}=-2+2=0\)

\(B=\sqrt{\dfrac{\left(9-4\sqrt{3}\right)\left(6-\sqrt{3}\right)}{\left(6-\sqrt{3}\right)\left(6+\sqrt{3}\right)}}-\sqrt{\dfrac{\left(3+4\sqrt{3}\right)\left(5\sqrt{3}+6\right)}{\left(5\sqrt{3}-6\right)\left(5\sqrt{3}+6\right)}}\)

\(=\sqrt{\dfrac{66-33\sqrt{3}}{33}}-\sqrt{\dfrac{78+39\sqrt{3}}{39}}=\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\right)=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{3}-1-\sqrt{3}-1\right)=-\sqrt{2}\)

a) Ta có: \(A=\dfrac{\sqrt{10}-3\sqrt{2}}{\sqrt{7-3\sqrt{5}}}-\dfrac{\sqrt{10}-\sqrt{14}}{\sqrt{6-\sqrt{35}}}\)

\(=\dfrac{2\sqrt{5}-6}{3-\sqrt{5}}-\dfrac{2\sqrt{5}-2\sqrt{7}}{\sqrt{7}-\sqrt{5}}\)

\(=\dfrac{\left(2\sqrt{5}-6\right)\left(3+\sqrt{5}\right)}{4}-\dfrac{\left(2\sqrt{5}-2\sqrt{7}\right)\left(\sqrt{7}+\sqrt{5}\right)}{2}\)

\(=\dfrac{\left(\sqrt{5}-3\right)\left(3+\sqrt{5}\right)-\left(2\sqrt{5}-2\sqrt{7}\right)\left(\sqrt{7}+\sqrt{5}\right)}{2}\)

\(=\dfrac{5-9-2\left(5-7\right)}{2}\)

\(=\dfrac{-4-2\cdot\left(-2\right)}{2}\)

\(=0\)