K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
10 tháng 11 2021

\(f\left(x\right)=x^3-6x^2+9x+m^2-5\)

\(f'\left(x\right)=3x^2-12x+9=3\left(x^2-4x+3\right)\)

\(f'\left(x\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\in\left[1,3\right]\\x=3\in\left[1,3\right]\end{cases}}\)

\(f\left(1\right)=m^2-1,f\left(3\right)=m^2-5\)

Suy ra \(minf\left(x\right)_{\left[1,3\right]}=min\left\{f\left(1\right),f\left(3\right)\right\}=f\left(3\right)=m^2-5\)

\(maxf\left(x\right)_{\left[1,3\right]}=max\left\{f\left(1\right),f\left(3\right)\right\}=f\left(1\right)=m^2-1\)

Để \(minf^2\left(x\right)_{\left[1,3\right]}=1\)thì \(\orbr{\begin{cases}m^2-5=1\\m^2-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=\pm\sqrt{6}\\m=0\end{cases}}\)

Chọn C. 

4 tháng 7 2016

lớp 12 đang thi ! chị đưa cái đo lên ai mà làm !!

4 tháng 7 2016

nhờ người ta giải mà cười hihi

em thì bó tay chấm chữ com vào ăn

4 tháng 7 2016

TXĐ: D=R

\(9^{x^2+x-1}-10.3^{x^2+x-2}+1=0\)

\(\Leftrightarrow9^{x^2+x-1}-10.\frac{3^{x^2+x-1}}{3}+1=0\)

Đặt t = \(3^{x^2+x-1}\)      (t>0)

\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3^{x^2+x-1}=3\\3^{x^2+x-1}=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+x-1=1\\x^2+x-1=\frac{1}{3}\end{array}\right.\)

 

26 tháng 2 2017

21. d[O,(P)]max => OA vuông góc (P) => n(P) =Vecto OA=(2; -1; 1)

=> (P):2x - y +z - 6 = 0. ĐA: D

22. D(x; 0; 0). AD = BC <=> (x-3)2 +16 = 25 => x = 0 v x = 6. ĐA: C

34. ĐA: A.

37. M --->Ox: A(3; 0; 0)

Oy: B(0; 1; 0)

Oz: C(0; 0;2)

Pt mp: x\3 + y\1+ z\2 = 1 <==> 2x + 6y + 3z - 6 = 0. ĐA: B

7 tháng 7 2017

\(2^{\sqrt{3x+2y-1}}+3^{\sqrt{2x-y-2}}=2\)

Ta có: \(\left\{{}\begin{matrix}\sqrt{3x+2y-1}\ge0\\\sqrt{2x-y-2}\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2^{\sqrt{3x+2y-1}}\ge1\\3^{\sqrt{2x-y-2}}\ge1\end{matrix}\right.\)

\(\Rightarrow2^{\sqrt{3x+2y-1}}+3^{\sqrt{2x-y-2}}\ge2\)

Dấu = xảy ra khi

\(\left\{{}\begin{matrix}3x+2y-1=0\\2x-y-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=-\dfrac{4}{7}\end{matrix}\right.\)

15 tháng 3 2017

Câu 31 thử ĐA

Câu 33: có công thức

Câu 35: Gọi A là giao điểm d và \(\Delta\) => A(1 +2t; t -1; -t )\(\in\) d

\(\overrightarrow{MA}=\left(2t-1;t-2;-t\right)\)\(\overrightarrow{MA}\perp\Delta\Rightarrow\overrightarrow{MA}.\overrightarrow{u_{\Delta}}=0\Leftrightarrow t=\dfrac{2}{3}\)=> ĐA: D

15 tháng 3 2017

Em cần hỏi c 34 í ạ. Dạ còn c 31 kh có cách giải ra hả anh

25 tháng 5 2016

chữ nhỏ quá mk ko thấy  j cả

25 tháng 5 2016

bạn tải về rồi zoom lên ý, vì đây là tớ chụp ảnh nên ảnh nhỏ
mong bạn tải về zoom lên hướng dẫn tớ với

7 tháng 9 2017

20

Gọi n là số con cá trên một đơn vị diện tích hồ (n>0). Khi đó:

Cân nặng của một con cá là: P(n)=480−20nP(n)=480−20n

Cân nặng của n con cá là:nP(n)=480n−20n2,n>0nP(n)=480n−20n2,n>0

Xét hàm số:f(n)=480n−20n2,n>0f(n)=480n−20n2,n>0

Ta có:

f′(n)=480−40nf′(n)=0⇔n=12f′(n)=480−40nf′(n)=0⇔n=12

Lập bảng biến thiên ta thấy số cá phải thả trên một đơn vị diện tích hồ để có thu hoạch nhiều nhất là 12 con.

7 tháng 9 2017

19 Gọi H là chân đường vuông góc kẻ từ A.
Áp dụng định lý Ta-lét cho các tam giác BAH và ABC ta được:


nên diện tích của hình chữ nhật sẽ là:

không đổi nên S phụ thuộc tích BQ.AQ mà (bđt Cauchy)
nên
Dấu bằng xra khi BQ=AQ=>M là trung điểm AH