K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

Xét ΔABC có 

E là trung điểm của AB

M là trung điểm của BC

Do đó: EM là đường trung bình của ΔABC

Suy ra: EM//AC và \(EM=\dfrac{AC}{2}\left(1\right)\)

Xét ΔADC có 

N là trung điểm của AD

F là trung điểm của CD

Do đó: NF là đường trung bình của ΔADC

Suy ra: NF//AC và \(NF=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra EM//NF và EM=NF

Xét tứ giác EMFN có 

EM//NF

EM=NF

Do đó: EMFN là hình bình hành

Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Xét tứ giác BFDE có

BE//DF

BE=DF

Do đó: BFDE là hình bình hành

Câu 10:

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\notin\left\{2;-1\right\}\\y\ne-5\end{matrix}\right.\)

\(A=\dfrac{y+5}{x^2-4x+4}\cdot\dfrac{x^2-4}{x+1}\cdot\dfrac{x-2}{y+5}\)

\(=\dfrac{y+5}{y+5}\cdot\dfrac{\left(x^2-4\right)}{x^2-4x+4}\cdot\dfrac{x-2}{x+1}\)

\(=\dfrac{\left(x^2-4\right)\cdot\left(x-2\right)}{\left(x+1\right)\left(x^2-4x+4\right)}\)

\(=\dfrac{\left(x+2\right)\left(x-2\right)\cdot\left(x-2\right)}{\left(x+1\right)\left(x-2\right)^2}=\dfrac{x+2}{x+1}\)

b: \(A=\dfrac{x+2}{x+1}\)

=>A không phụ thuộc vào biến y

Khi x=1/2 thì \(A=\left(\dfrac{1}{2}+2\right):\left(\dfrac{1}{2}+1\right)=\dfrac{5}{2}:\dfrac{3}{2}=\dfrac{5}{2}\cdot\dfrac{2}{3}=\dfrac{5}{3}\)

Câu 12:

a: \(A=\dfrac{x}{x+3}+\dfrac{2x}{x-3}+\dfrac{9-3x^2}{x^2-9}\)

\(=\dfrac{x}{x+3}+\dfrac{2x}{x-3}+\dfrac{9-3x^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{x\left(x-3\right)+2x\left(x+3\right)+9-3x^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{x^2-3x+2x^2+6x+9-3x^2}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{3x+9}{\left(x+3\right)\left(x-3\right)}=\dfrac{3\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{3}{x-3}\)

b: Khi x=1 thì \(A=\dfrac{3}{1-3}=\dfrac{3}{-2}=-\dfrac{3}{2}\)

\(x+\dfrac{1}{3}=\dfrac{10}{3}\)

=>\(x=\dfrac{10}{3}-\dfrac{1}{3}\)

=>\(x=\dfrac{9}{3}=3\left(loại\right)\)

Vậy: Khi x=3 thì A không có giá trị

c: \(B=A\cdot\dfrac{x-3}{x^2-4x+5}\)

\(=\dfrac{3}{x-3}\cdot\dfrac{x-3}{x^2-4x+5}\)

\(=\dfrac{3}{x^2-4x+5}\)

\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1>=1\forall x\) thỏa mãn ĐKXĐ

=>\(B=\dfrac{3}{x^2-4x+5}< =\dfrac{3}{1}=3\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi x-2=0

=>x=2

Bài 1: 

a: \(=-10x^3+20x^4-5x\)

b: \(=\dfrac{1}{3}a^2b+7a^5-1\)

c: \(=a^3+8+25-a^3=33\)

d: \(=x^2-16+8-x^3=-x^3+x^2-8\)

e: \(=a^3+1+8-a^3=9\)

f: \(=\dfrac{7-2x+4x-8}{2x+3}=\dfrac{2x-1}{2x+3}\)

g: \(=\dfrac{3}{2\left(x+3\right)}-\dfrac{2}{x\left(x+3\right)}\)

\(=\dfrac{3x-4}{2x\left(x+3\right)}\)

25 tháng 6 2018

a(b+1)+b(a+1)=(a+1)(b+1)

<=>ab+a+ab+b=ab+a+b+1

<=>ab+a+ab+b-ab-a-b=1

<=>ab=1 (đpcm)

19 tháng 7 2021

3) \(\sqrt{\left(x-2\right)\left(x+1\right)}\) thì (x-2)(x+1)>0

=> x2 -x-2>0

=> x2 - x - \(\dfrac{1}{2}\)\(\dfrac{3}{2}\)>0

= (x+\(\dfrac{1}{4}\))2 - 3/2 >0

=> x+ 1/4>3/2

=> x>5/4

4) Có x đâu mà tìm bạn??

 

19 tháng 7 2021

da em ghi nham x thanh n :<

26 tháng 9 2021

a) \(\dfrac{A}{x-2}=\dfrac{x^2+3x+2}{x^2-4}\)

\(\Leftrightarrow\dfrac{A}{x-2}=\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\dfrac{A}{x-2}=\dfrac{x+1}{x-2}\Leftrightarrow A=x+1\)

b) \(\dfrac{M}{x-1}=\dfrac{x^2+3x+2}{x+1}\)

\(\Leftrightarrow\dfrac{M}{x-1}=\dfrac{\left(x+1\right)\left(x+2\right)}{x+1}\)

\(\Leftrightarrow\dfrac{M}{x-1}=x+2\Leftrightarrow M=\left(x-1\right)\left(x+2\right)=x^2+x-2\)

24 tháng 1 2022

- Đang thi à bạn ?

24 tháng 1 2022

yepp

 

22 tháng 6 2021

a) Xét \(\Delta ABH\) và \(\Delta AKC\) có:

\(\widehat{BAH}=\widehat{CAK}\left(gt\right)\)

\(\widehat{AHB}=\widehat{ACK}\left(=90^o\right)\)

=> \(\Delta ABH\sim\Delta AKC\left(g-g\right)\) abc

=> \(\dfrac{AB}{AK}=\dfrac{AH}{AC}\) (2 cặp cạch tương ứng)

=> AB.AC = AK.AH

b) Gọi I là giao điểm của BC và AK

Có \(\Delta ABH\sim\Delta AKC\)

=> \(\widehat{ABH}=\widehat{AKC}\) (2 góc tương ứng)

hay \(\widehat{ABI}=\widehat{IKC}\)

Xét \(\Delta ABI\) và \(\Delta CKI\) có:

\(\widehat{ABI}=\widehat{IKC}\)

\(\widehat{AIB}=\widehat{CIK}\) (2 góc đối đỉnh)

=> \(\Delta ABI\sim\Delta CKI\left(g-g\right)\)

=> \(\dfrac{AI}{CI}=\dfrac{BI}{KI}\) (2 cặp cạnh tương ứng)

Xét \(\Delta AIC\) và \(\Delta BIK\) có: 

\(+\dfrac{AI}{CI}=\dfrac{BI}{KI}\)

\(\widehat{AIC}=\widehat{BIK}\) (2 góc đối đỉnh)

=> \(\Delta AIC\sim\Delta BIK\left(c-g-c\right)\)

=> \(\widehat{IAC}=\widehat{IBK}\) (2 góc tương ứng)

=> \(\widehat{IBK}=\widehat{BAH}\)

Mà \(\widehat{BAH}+\widehat{ABH}=90^o\)

=> \(\widehat{ABH}+\widehat{IBK}=90^o=>\widehat{ABK}=90^o\)

Xét tứ giác ABKC có:

\(\widehat{ABK}+\widehat{ACK}+\widehat{BAC}+\widehat{BKC}=360^o\)

=> \(\widehat{BAC}+\widehat{BKC}=180^o\)

22 tháng 4 2021

a) Ta có: AB//CD.

=>ABH=BDC (2 góc so le trong).

=> ∆AHB~∆BCD(g.g).

b) ∆ABD có :  DB²=AB²+AD²( Định lý Pitago)

=> DB= 15(cm).

Ta có ∆ABH~∆BCD(cmt).

=>AH/BC=AD/BD.

Hay AH=9.12/15=7,2(cm).

c)Ta có ∆AHB~∆BCD cmt.

=> HBA=CBD. (1)

Ta lại có : CBD= ADH (AB//CD).(2)

Từ 1 và 2 => HAB=ADH.

=>∆DHA~∆AHB(g.g).

S∆DHA/S∆AHB=(AD/AB)²=9/16

d) từ câu (a) và (b) => ∆BCD~∆DHA.

Cm ∆DHA~∆MDA(g.g)

Từ đó  suy ra ∆BDC~∆MDA.

Sau đó cm ∆BCD~∆ADC(g.g).

=> ∆MDA~∆ADC(g.g).

=>Ad/DC=DM/DC.

=>Đpcm.