Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phân tích đa thức sau thành nhân tử:
a) x5 + x + 1
b) x2 - 4xy + 4y2 - 2x + 4y - 35
c) x4 - 5x2y2 + 4y2
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a)\) \(x^2-2x-4y^2-4y\)
\(=\)\(\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)
\(=\)\(\left(x-1\right)^2-\left(2y+1\right)^2\)
\(=\)\(\left(x-1-2y-1\right)\left(x-1+2y+1\right)\)
\(=\)\(\left(x-2y-2\right)\left(x+2y\right)\)
\(=\)\(2\left(x-y\right)\left(x+2y\right)\)
Chúc bạn học tốt ~
a) Ta có x2 - 2x - 4y2 - 4y
= x2 - 2x + 1 - 4y2 - 4y - 1
= (x - 1)2 - (4y2 + 4y + 1)
= (x - 1)2 - (2y + 1)2
= (x - 1 - 2y - 1)(x - 1 + 2y + 1)
= (x - 2y - 1)(x + 2y)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x^4 - x^3 - x + 1
= x^3 ( x - 1 ) - ( x- 1 )
= ( x^3 - 1 )(x - 1)
= ( x- 1 )^2 (x^2 + x + 1 )
a)x4-x3-x+1
=x3(x-1)-(x-1)
=(x-1)(x3-1)
=(x-1)(x-1)(x2+x+1)
=(x-1)2(x2+x+1)
b)5x2-4x+20xy-8y
(sai đề)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) \(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-2\left(x+2y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
b ) \(x^4+2x^3-4x-4\)
\(=\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2+2+2x\right)\)
a,x2-2x-4y2-4y=(x2-4y2)-(2x+4y)
=(x-2y).(x+2y)-2(x+2y)
=(x+2y).(x-2y-2)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x2-2x-4y2-4y = (x2-4y2) -2(x+2y)= (x-2y)(x+2y) - 2(x+2y)= (x+2y)(x-2y-2)
b) x4+2x3-4x-4=(x2-2)(x2+2) +2x(x2-2)=(x2-2)(x2+2+2x)
NHớ chọn mik nha :)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đây là cách hiện đại :
\(x^4-2x^3+2x-1\)
\(=\left(x^4-1\right)-\left(2x^3-2x\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(\left(x^2+1\right)-2x\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(\left(x^2+1\right)-2x\right)\)
a,=\(x^4-x^3-x^3+x^2-x^2+x+x-1\)
cu hai so nhom 1 nhom roi dat thua so chung la xong
b,x^4+x^3+x^3+x^2+x^2+x+x+1
cu hai so lai nhom 1 nhom va dat thua so chung
![](https://rs.olm.vn/images/avt/0.png?1311)
a. 2x-1-x2= -(x2-2x+1)=-(x-1)2
b. 8x3+y6=(2x)3+(y2)3
=(2x+y2)(4x2-2xy2+y4)
c. x2-16+4xy+4y2=(x2+4xy+4y2)-16
=(x+2y)2-16=(x+2y+4)(x+2y-4)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(x^2-2x+1\right)-\left(y^2+2y+1\right)\)
\(=\left(x-1\right)^2-\left(y+1\right)^2\)
\(=\left(x-y-2\right)\left(x+y\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 25 - x2 + 4xy - 4y2 = 25 - (x2 - 4xy + 4y2) = 52 - (x - 2y)2 = (5 + x - 2y)(5 - x +2y) = (x - 2y + 5)(2y - x + 5)
b) 3a2c2 + bd + 3abc + acd = (3a2c2 + 3abc) + (bd + acd) = 3ac(ac + b) + d (ac + b) = (ac + b)(3ac + d)
c) x3 - 2x2 - x + 2 = x2(x - 2) - (x - 2) = (x - 2)(x2 - 1) = (x - 2)(x - 1)(x + 1)
d) a4 + 5a3 + 15a - 9 = (a4 + 3a2) + (5a3 + 15a) - (3a2 + 9) = a2(a2 + 3) + 5a(a2 + 3) - 3(a2 + 3) = (a2 + 3)(a2 + 5a - 3)
\(\text{a) }x^2+4y^2+2x-4y-4xy-24\\ \\ =\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)-24\\ \\ =\left(x-2y\right)^2+2\left(x-2y\right)-24\\ \\ =\left(x-2y\right)\left(x-2y+2\right)-24\\ =\left(x-2y+1-1\right)\left(x-2y+1+1\right)-24\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\left(1\right)\)
Đặt \(\left(x-2y+1\right)=a\left(\text{*}\right)\)
Thay \(\) \(\left(\text{*}\right)\) vào \(\left(1\right)\)
\(\text{Ta được : }\left(1\right)=\left(a-1\right)\left(a+1\right)-24\\ \\ =a^2-1-24\\ \\ =a^2-25\\ \\ =\left(a+5\right)\left(a-5\right)\text{ }\text{ }\text{ }\text{ }\left(2\right)\)
Thay \(\left(\text{*}\right)\) vào \(\left(2\right)\)
\(\text{Ta lại được : }\left(2\right)=\left(x-2y+1+5\right)\left(x-2y+1-5\right)\\ \\=\left(x-2y+6\right)\left(x-2y-4\right)\)