K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

40: Ta có: \(A=27x^3+8y^3-3x-2y\)

\(=\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)-\left(3x+2y\right)\)

\(=\left(3x+2y\right)\left(9x^2-6xy+4y^2-1\right)\)

30 tháng 9 2021

a) Đặt \(a=x^2+x\)

Đa thức trở thành: \(a^2-14a+24=\left(a^2-14a+49\right)-25=\left(a-7\right)^2-25=\left(a-7-5\right)\left(a-7+5\right)=\left(a-12\right)\left(a-2\right)\)

Thay a:

\(\left(a-12\right)\left(a-2\right)=\left(x^2+x-12\right)\left(x^2+x-2\right)\)

b) Đặt \(a=x^2+x\)

Đa thức trở thành:

\(\left(x^2+x\right)^2+4x^2+4x-12=\left(x^2+x\right)^2+4\left(x^2+x\right)-12=a^2+4a-12=\left(a^2+4x+4\right)-16=\left(a+2\right)^2-16=\left(a+2-4\right)\left(a+2+4\right)=\left(a-2\right)\left(a+6\right)\)

Thay a:

\(\left(a-2\right)\left(a+6\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)\)

Bài 2: 

a: \(x^2-6x-y^2-4y+5\)

\(=x^2-6x+9-\left(y^2+4y+4\right)\)

\(=\left(x-3\right)^2-\left(y+2\right)^2\)

b: \(4a^2-12a-b^2+2b+8\)

\(=4a^2-12a+9-\left(b^2-2b+1\right)\)

\(=\left(2a-3\right)^2-\left(b-1\right)^2\)

c: \(\left(x+y-3\right)\left(x+y+3\right)\)

\(=\left(x+y\right)^2-3^2\)

d: \(\left(3z+x+2y\right)\left(2y-x+3z\right)\)

\(=\left(2y+3z\right)^2-x^2\)

17 tháng 10 2021

a: Xét tứ giác BHCK có 

BK//CH

BH//CK

Do đó:BHCK là hình bình hành

30 tháng 9 2021

\(5,\\ a,=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\\ b,=x^4+16x^2+64-16x^2=\left(x^2+8\right)^2-16x^2=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\\ c,=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-x+1\\ =x^6\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\\ =\left(x^6-x^4+x^3-x+1\right)\left(x^2+x+1\right)\)

30 tháng 9 2021

\(d,=x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\\ =\left(x^4-x^2+1\right)\left(x^4+2x^2+1-x^2\right)\\ =\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\\ e,=x^5+x^4-x^4+x^3-x^3+x^2-x^2+x+1\\ =x^3\left(x^2+x+1\right)-x^2\left(x^2+x+x\right)+\left(x^2+x+1\right)\\ =\left(x^3-x^2+1\right)\left(x^2+x+1\right)\\ f,=x^3+2x^2-x^2-2x+2x+4\\ =\left(x+2\right)\left(x^2-x+2\right)\\ g,=x^4+2x^2+1-25=\left(x^2+1\right)^2-25\\ =\left(x^2+1-5\right)\left(x^2-1-5\right)=\left(x^2-4\right)\left(x^2-6\right)=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)

\(h,=x^3-2x^2+2x^2-4x+2x-4=\left(x-2\right)\left(x^2+2x+2\right)\\ i,=a^4-4a^2b^2+4b^4-4a^2b^2=\left(a^2-2b^2\right)^2-4a^2b^2\\ =\left(a^2-2ab-2b^2\right)\left(a^2+2ab-2b^2\right)\)

30 tháng 8 2021

đâu cơ tôi chẳng hiểu?

30 tháng 8 2021

giúp cho người ta học vẹt à?

a: Xét ΔAHD có 

AP là đường cao ứng với cạnh HD

AP là đường trung tuyến ứng với cạnh HD

Do đó: ΔAHD cân tại A

mà AP là đường cao ứng với cạnh HD

nên AP là đường phân giác ứng với cạnh HD

Xét ΔAHE có 

AQ là đường cao ứng với cạnh HE

AQ là đường trung tuyến ứng với cạnh HE

Do đó: ΔHAE cân tại A

mà AQ là đường cao ứng với cạnh HE

nên AQ là đường phân giác ứng với cạnh HE

Ta có: \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}\)

\(=2\left(\widehat{QAH}+\widehat{PAH}\right)\)

\(=2\cdot90^0=180^0\)

Do đó: E,A,D thẳng hàng

mà AD=AE(=AH)

nên A là trung điểm của DE

2 tháng 10 2021

a) Xét \(\Delta ADP\) = \(\Delta AHP\) có: ( cạnh huyền -cạnh góc vuông)

góc APD = APH=90o

AD = AH

AP chung                                               

=> AD=AH (1)

CMTT với \(\Delta AEQ=\Delta AHQ\left(CH-CGV\right)\)

=> AE= AH (2)

Từ 1 và 2 => AD= AE

=> A là trung điểm của DE

b) Xét \(\Delta DHE\) có:

DP=PH; HQ=QE

=> PQ là đg trung bình của tam giắc DHE

=> PQ// DE; PQ=1/2 DE

c) Xét tứ giác APHQ có: góc HPA= 90o; Góc A =90o; góc HQA=90o 

=> Tứ giác APHQ là HCN

=> PQ=AH ( theo t/c HCN)  

 

14 tháng 9 2021

7. A = (x + y)^2 - 4y^2

= (x + y - 2y)(x + y + 2y)

= (x - y)(x + 3y)

14 tháng 9 2021

2. x^4 + 4

= x^4 + 4x^2 + 4 - 4x^2

= (x^2 + 2)^2 - (2x)^2

= (x^2 + 2x + 2)(x^2 - 2x + 2)