Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O A B C N M I
a) Do AB là tiếp tuyến của (O) (GT) => OB vuông góc với AB (ĐL)
Mà OB vuông góc với ON (GT) => AB // ON (từ vuông góc -> //) hay AM // ON
Cm tương tự => AN // OM
Do 2 tiếp tuyến AB và AC cắt nhau tại A (GT) => OA phân giác góc BAC (t/c tiếp tuyến) hay OA phân giác góc MAN
Xét tứ giác AMON có: AM // ON, AN // OM, OA phân giác góc MAN (cmt) => AMON là hình thoi (dhnb)
b) Đặt I là trung điểm OA => OI = OA/2 = 2R/2 = R hay OI là bán kính của (O)
Do AMON là hình thoi (cmt) => OA vuông góc với MN tại I (t/c) hay OI vuông góc với MN tại I
Mà OI là bán kính của (O) => MN là tiếp tuyến của (O) (định lý)
c) Xét tam giác OAB có OA vuông góc với AB (cmt) \(\Rightarrow\sin OAB=\frac{OB}{AB}=\frac{1}{2}\) => góc OAB = 30o => góc ION = 30o (so le)
Xét hình thoi AMON có OA cắt MN tại I (cmt) => I là trung điểm MN (t/c) hay IN = IM = MN/2
Xét tam giác ION có góc OIN = 90o, góc ION = 30o(cmt) \(\Rightarrow OI=IN.\cos ION=\frac{MN}{2}.\cos30^o\Rightarrow MN=\frac{4.OI}{\sqrt{3}}=\frac{4R}{\sqrt{3}}\)
\(S_{AMON}=\frac{1}{2}.OA.MN=\frac{1}{2}.2R.\frac{4R}{\sqrt{3}}=\frac{4R^2}{\sqrt{3}}\)
a) OM vuông góc với OC ; AC vuông OC => OM//AC hay OM//AN (1)
ON vuông góc OB ; AB vuông góc OB => ON //AB hay ON //AM (2)
(1)(2) => AMON là HBH (3)
Mặt khác có AO là phân giác MAN (4)
(3)(4) => dpcm
b) Theo a AMON là hình thoi => MN vuông góc OA tại trung diển H ; MN là tiếp tuyến => H thuộc (O)
=> OA = 2 OH = 2 R
\(\Rightarrow AO\) A M D N B C O
a.Vì AB,AC là tiếp tuyến của (O)
\(\Rightarrow OC\perp AC,OB\perp AB\Rightarrow ON//AB,OM//AC\)
\(\Rightarrow AMON\) là hình bình hành
Mà AB,AC là tiếp tuyến của (O) là phân giác \(\widehat{BAC}\)
\(\Rightarrow AO\)là phân giác \(\widehat{MAN}\)
\(\Rightarrow AMON\) là hình thoi
b ) Gọi AO∩MN=D
Vì AMON là hình thoi \(\Rightarrow AO\perp MN=D\Rightarrow AD=2OD\)
\(\Rightarrow\)Để MN là tiếp tuyến của (O)
\(\Rightarrow OD=R\Rightarrow OA=2OD=2R\)
Dễ có AMON là hình bình hành (ON // AM; OM // AN)
Ta chứng minh OM = ON
Xét tam giác OBM và tam giác OCN có:
ˆOBM=ˆOCN = 90oOBM^=OCN^ = 90o;
OB = OC = R,
và ˆOMB=ˆOCN=ˆAOMB^=OCN^=A^
⇒ ΔOBM = ΔOCN⇒ ∆OBM = ∆OCN
⇒ OM = ON ⇒ AMON⇒ OM = ON ⇒ AMON là hình thoi
HT...