Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thừa nhận định lý f(x) chia hết cho x-a thì f(a) =0 ( mình đang vội khỏi chứng minh nhé, nếu thắc mắc phiền bạn xem SGK 9 nha)
Thay 1 vào x, ta có
f(x) =14+12+a=0
2+a=0 suy ra a=-2
Mình trình bày cho dễ hiểu nha
\(sina-\sqrt{3}cosa\)
\(=2\cdot\left(\frac{1}{2}sina-\frac{\sqrt{3}}{2}cosa\right)\)
\(=2\cdot\left(sinacos\frac{pi}{6}-cosasin\frac{pi}{6}\right)\)
\(=2\cdot sin\left(a-\frac{pi}{6}\right)\)
Ta có\(-1\le sin\left(a-\frac{pi}{6}\right)\le1\)
\(-2\le sin\left(a-\frac{pi}{6}\right)\le2\)
Vậy Min=-2
Max=2
Hoành độ đỉnh: \(\dfrac{-b}{2a}=-\dfrac{-2}{2}=1\)
a > 0 nên đồ thị hướng lên
Vậy HS đồng biến trong khoảng (1;+\(\infty\)) -> Chọn A
1. \(\dfrac{4x}{4x^2-8x+7}+\dfrac{3x}{4x^2-10x+7}=1\)
Dễ thấy \(x=0\) ko phải là nghiệm của pt
Chia tử và mẫu cho x, ta được:
\(\dfrac{4}{4x-8+\dfrac{7}{x}}+\dfrac{3}{4x-10+\dfrac{7}{x}}=1\) (*)
Đặt \(t=4x+\dfrac{7}{x}-8\) thì:
(*) \(\Rightarrow\dfrac{4}{t}+\dfrac{3}{t-2}=1\)
Quy đồng lên tìm được t, sau đó dễ dàng tìm được x.
Đường thẳng y = ax + b đi qua A( -1; 2) và B( 2; -3)
Nên có hpt: \(\left\{{}\begin{matrix}-a+b=2\\2a+b=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(y=-\dfrac{5}{3}x+\dfrac{1}{3}\)
-> Chon B
Câu 9: ĐKXĐ: \(3-2x\ge0\)
\(\Leftrightarrow x\le\dfrac{3}{2}\)
-> Chọn B
Câu 10: Bấm máy là ra.
đề ghi rõ ra dc ko ạ=^=