K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

\(\text{#TNam}\)

`a,`

Xét Tam giác `ABI` và Tam giác `MBI` có:

`\text {BI chung}`

\(\widehat{ABI}=\widehat{MBI} (\text {tia phân giác}\) \(\widehat{ABM} )\)

\(\widehat{BAI}=\widehat{BMI}=90^0\)

`=> \text {Tam giác ABI = Tam giác MBI (ch-gn)}`

`=> BA = BM (\text {2 cạnh tương ứng})`

Gọi `H` là giao điểm của `BI` với `AM`

Xét Tam giác `HAB` và Tam giác `HMB` có:

\(\text{BA = BM (CMT)}\)

\(\widehat{ABH}=\widehat{MBH} (\text {tia phân giác} \widehat{ABM})\)

`\text {BH chung}`

`=> \text {Tam giác HAB = Tam giác HMB (c-g-c)}`

`-> \text {HA = HM (2 cạnh tương ứng)}`

`->`\(\widehat{BHA}=\widehat{BHM} (\text {2 góc tương ứng})\)

Mà `2` góc này nằm ở vị trí kề bù

`->`\(\widehat{BHA}+\widehat{BHM}=180^0\)

`->`\(\widehat{BHA}=\widehat{BHM}=\)`180/2=90^0`

`-> \text {BH} \bot \text {AM}`

Ta có: \(\left\{{}\begin{matrix}BH\perp AM\\HA=HM\end{matrix}\right.\)

`->` \(\text{BI là đường trung trực của AM.}\)

`b,`

Xét Tam giác `BAC` và Tam giác `BMN` có:

\(\widehat{B} \) `\text {chung}`

`BA = BM (a)`

\(\widehat{BAC}=\widehat{BMN}=90^0\)

`=> \text {Tam giác BAC = Tam giác BMN (g-c-g)}`

`-> \text {BN = BC (2 cạnh tương ứng)}`

Xét Tam giác `BIN` và Tam giác `BIC` có:

`BN = BC (CMT)`

\(\widehat{NBI}=\widehat{CBI} (\text {tia phân giác} \widehat{NBC})\)

`\text {BI chung}`

`=> \text {Tam giác BIN = Tam giác BIC (c-g-c)}`

`-> \text {IN = IC (2 cạnh tương ứng)}`
`c,`

Gọi `K` là giao điểm của `BI` và `NC`

Xét Tam giác `NBK` và Tam giác `CBK` có:

`BN = BC (CMT)`

\(\widehat{NBK}=\widehat{CBK} (\text {tia phân giác} \widehat{NBC})\)

`\text {BK chung}`

`=> \text {Tam giác NBK = Tam giác CBK (c-g-c)}`

`->`\(\widehat{BKN}=\widehat{BKC} (\text {2 góc tương ứng})\)

Mà `2` góc này nằm ở vị trí kề bù

`->`\(\widehat{BKN}+\widehat{BKC}=180^0\)

`->`\(\widehat{BKN}=\widehat{BKC}=\)`180/2=90^0`

`-> \text {BK} \bot \text {NC}`

`-> \text {BI} \bot \text {NC (đpcm)}`

loading...

30 tháng 1 2019

 cau a phai la tamgiac HBA = tamgiac AMD phai k 

phai thi tu ve hinh :

a, DM | IH (GT) va AH | BH (GT)  ma 2 duong thang DM; BH phan biet 

=> DM // BH (dl)

=> goc MDB + DBH = 180o (tcp)

co tamgiac ADB vuong can tai A do  goc A = 90o (gt) va AD = AB (gt)   

=> goc MDA + goc ABH = 90o  

ma goc MDA + goc DAM = 90o (tc) do tamgiac DMA vuong tai M do DM | IA (gt)

=> goc MAD = goc ABH 

xet tamgiac AMD va tamgiac BHA co : goc DMA = goc ANB = 90o va AD = AB (GT)

=>  tamgiac AMD = tamgiac BHA (ch - gn)

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

DO đó: ΔBAD=ΔBHD

Suy ra: DA=DH

b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó:ΔADK=ΔHDC

Suy ra: AK=HC

Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

=>ΔBKC cân tại B

mà BD là đường phân giác

nên BD là đường cao

30 tháng 4 2022

Bạn ơi, câu b) lqf chứng minh BD vuông góc KC mà?