K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 4 2018

Câu 1)

\(\sqrt{2x^2+x+9}+\sqrt{2x^2-x+1}=x+4\)

ĐKXĐ:.......

Đặt \(\left\{\begin{matrix} \sqrt{2x^2+x+9}=a\\ \sqrt{2x^2-x+1}=b\end{matrix}\right.(a,b\geq 0)\)

\(\Rightarrow \left\{\begin{matrix} 2x^2+x+9=a^2\\ 2x^2-x+1=b^2\end{matrix}\right.\) \(\Rightarrow a^2-b^2=2x+8\)

Như vậy, pt tương đương:

\(a+b=\frac{a^2-b^2}{2}\)

\(\Leftrightarrow (a+b)\left(1-\frac{a-b}{2}\right)=0(1)\)

Thấy rằng : \(a=\sqrt{2(x+\frac{1}{4})^2+\frac{71}{8}}>0\);

\(b=\sqrt{2x^2-x+1}=\sqrt{2(x-\frac{1}{4})^2+\frac{7}{8}}>0\)

Do đó: \(a+b>0(2)\)

Từ \((1); (2)\Rightarrow 1-\frac{a-b}{2}=0\)

\(\Leftrightarrow a-b=2\)

\(\Rightarrow \sqrt{2x^2+x+9}=\sqrt{2x^2-x+1}+2\)

\(\Rightarrow 2x^2+x+9=2x^2-x+1+4+4\sqrt{2x^2-x+1}\) (bình phương)

\(\Rightarrow x+2=2\sqrt{2x^2-x+1}\)

\(\Rightarrow x^2+4x+4=4(2x^2-x+1)\)

\(\Rightarrow 7x^2-8x=0\Leftrightarrow x=0\) hoặc \(x=\frac{8}{7}\)

Thử lại thấy thỏa mãn.

AH
Akai Haruma
Giáo viên
4 tháng 4 2018

Câu 2:
ĐKXĐ:.....

Thực hiện liên hợp.

\(\sqrt{3x^2-5x+1}-\sqrt{3x^2-3x-3}=\sqrt{x^2-2}-\sqrt{x^2-3x+4}\)

\(\Leftrightarrow \frac{3x^2-5x+1-(3x^2-3x-3)}{\sqrt{3x^2-5x+1}+\sqrt{3x^2-3x-3}}=\frac{x^2-2-(x^2-3x+4)}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)

\(\Leftrightarrow \frac{-2x+4}{\sqrt{3x^2-5x+1}+\sqrt{3x^2-3x-3}}=\frac{3x-6}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)

\(\Leftrightarrow (x-2)\left(\frac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}+\frac{2}{\sqrt{3x^2-5x+1}+\sqrt{3x^2-3x-3}}\right)=0\)

Hiển nhiên biểu thức trong ngoặc lớn luôn lớn hơn $0$

Do đó: \(x-2=0\Leftrightarrow x=2\)

Thử lại thấy thỏa mãn.

Vậy \(x=2\)