K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

\(P = xy(x - 2)(y+6) + 12x^2 – 24x + 3y^2 + 18y + 36 \)

\(= x^2.y^2 + 6x^2y - 2xy^2 - 12xy – 24x + 3y^2 + 18y + 36 \)

\(= (18y + 36) + (6x2y + 12x^2) – (12xy + 24x) + (x^2y - 2xy^2 + 3y^2) \)

\(= 6(y + 2)(x^2 – 2x + 3) + y^2(x^2 – 2x + 3) \)

\(= (x^2 – 2x + 3)(y^2 + 6y +12) = [(x -1)^2 + 2][(y + 3)^2 +3] > 0 \)

Vậy P > 0 với mọi x, y thuộc  R.

1 tháng 8 2016

bạn ghi rõ hơn đc k ạ. mình k hiểu 

 

Sửa đề: Biểu thức luôn có giá trị dương

Ta có: \(3x^2+2x-5\)

\(=3\left(x^2+\dfrac{2}{3}x-\dfrac{5}{3}\right)\)
\(=3\left(x^2+2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{16}{9}\right)\)

\(=3\left(x+\dfrac{1}{3}\right)^2-\dfrac{16}{3}\ge-\dfrac{16}{3}\forall x\)

\(\Leftrightarrow\dfrac{1}{3\left(x+\dfrac{1}{3}\right)^2-\dfrac{16}{3}}\le\dfrac{1}{\dfrac{-16}{3}}=\dfrac{-3}{16}\forall x\)

\(\Leftrightarrow\dfrac{-1}{3\left(x+\dfrac{1}{3}\right)^2-\dfrac{16}{3}}\ge\dfrac{3}{16}>0\forall x\)(đpcm)

 

20 tháng 10 2021

Ta có: \(M=\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+2=\left(x-2y\right)^2+\left(y-1\right)^2+2\)

Vì \(\left(x-2y\right)^2,\left(y-1\right)^2>0\)với mọi x,y nên M luôn dương

Ta có điều phải chứng minh

2 tháng 8 2019

a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

2 tháng 8 2019

c) \(C=4x-10-x^2=-\left(x^2-4x+10\right)\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2+6\right]\)

\(=-\left(x^2-4x+4+6\right)=-\left[\left(x-2\right)^2\right]-6\le-6< 0\forall x\)

bn lên mạng tìm ik. nhiều lắm

4 tháng 4 2018

mình tìm không tháy bạn ơi ~ chủ yếu là mình nhờ mấy bạn từng học qua rồi chỉ giúp những dạng chủ yếu,mẹo vặt các loại đấy bạn !! không phải mình tìm đề đâu ~~`

9 tháng 7 2016

\(Q=x^2+y^2+xy+x+y+10\)

\(=\left(x^2+xy+x\right)+y^2+y+10\)

\(=x^2+x\left(y+1\right)+y^2+y+10\)

\(=x^2+2.x.\frac{y+1}{2}+\left(\frac{y+1}{2}\right)^2+y^2+y-\left(\frac{y+1}{2}\right)^2+10\)

\(=\left(x+\frac{y+1}{2}\right)^2+y^2+y-\frac{\left(y+1\right)^2}{4}+10\)

\(=\left(x+\frac{y+1}{2}\right)^2+y^2+y-\frac{y^2+2y+1}{4}+10\)

\(=\left(x+\frac{y+1}{2}\right)^2+y^2+y-\frac{1}{4}y^2-\frac{1}{2}y-\frac{1}{4}+10\)

\(=\left(x+\frac{y+1}{2}\right)^2+\frac{3}{4}y^2+\frac{1}{2}y+\frac{39}{4}\)

\(=\left(x+\frac{y+1}{2}\right)^2+\frac{3}{4}\left(y^2+\frac{2}{3}y+13\right)=\left(x+\frac{y+1}{2}\right)^2+\frac{3}{4}\left(y^2+2.y.\frac{2}{6}+\frac{4}{36}-\frac{4}{36}+13\right)\)

\(=\left(x+\frac{y+1}{2}\right)^2+\frac{3}{4}\left[\left(y+\frac{2}{6}\right)^2+\frac{116}{9}\right]=\left(\frac{2x+y+1}{2}\right)^2+\frac{3}{4}\left(y+\frac{2}{6}\right)^2+\frac{29}{3}\)

\(\left(\frac{2x+y+1}{2}\right)^2\ge0;\frac{3}{4}\left(y+\frac{2}{6}\right)^2\ge0=>\left(\frac{2x+y+1}{2}\right)^2+\frac{3}{4}\left(y+\frac{2}{6}\right)^2+\frac{29}{3}\ge\frac{29}{3}>0\) (với mọi x;y)

Vậy biểu thức Q luôn dương với mọi giá trị của biến

=>4Q=4x2+4xy+4y2+4x+4y+40

=4x2+4x(y+1)+(y+1)2+4y2-y2+4y-2y+40-1

=(2x+y+1)2+3y2+2y+39

\(=\left(2x+y+1\right)^2+\left(\sqrt{3}y+\frac{\sqrt{3}}{3}\right)^2+\frac{116}{3}\)

\(\Rightarrow Q=\left(\frac{2x+y+1}{2}\right)^2+\left(\frac{\sqrt{3}y+\frac{\sqrt{3}}{3}}{2}\right)^2+\frac{29}{3}>0\)

=>đpcm